Cache Replacement Policies

Cache Replacement Policies

Akanksha Jain

The University of Texas at Austin

Calvin Lin
The University of Texas at Austin

SYNTHESIS LECTURES ON XYZ #13

1\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

This book summarizes the landscape of cache replacement policies for CPU data
caches. Our emphasis is on algorithmic issues, so we start by defining a taxonomy
that places previous policies into two broad categories, which we refer to as Coarse-
Grained policies and Fine-Grained policies. Each of these categories is then sub-
divided into three more categories that each describes a different approach to solv-
ing the cache replacement problem. Having defined this taxonomy, we then describe
in more detail each category of the taxonomy, along with summaries of significant
work in each category. We then describe work that considers richer factors, includ-
ing solutions that optimize for metrics beyond cache miss rates, solutions tailored to
multi-core settings, solutions that consider interactions with prefetchers, and solu-
tions that consider new memory technologies. We conclude by discussing trends and
challenges for future work.

KEYWORDS

hardware caches, CPUs, cache replacement policies

Contents

Preface viii
Acknowledgments X
Introduction 1
A Taxonomy of Cache Replacement Policies 3
2.1 Coarse-Grained Policies, 4
2.2 Fine-Grained Policies oo, 5
2.3 Design Considerationsuviiineiineineineennennn. 6
Coarse-Grained Replacement Policies 9
3.1 Recency-Based Policies........... ... 9
3.1.1 Variants of LRUo 10
3.1.2 Beyond LRU: Insertion and Promotion Policies............. 14
3.1.3 Extended Lifetime Recency-Based Policies 19
3.2 Frequency-Based Policies it 20
3.3 Hybrid Policieso 23
3.3.1 Adaptive Replacement Cache (ARC) 23
3.32 SetDuelingooiii 23
Fine-Grained Replacement Policies 26
4.1 Reuse Distance Prediction Policies 27
4.1.1 Expiration-Based Dead Block Predictors 27
4.1.2 Reuse Distance Orderingcoviiiiiineeennn.. 28
4.2 Classification-Based Policies 29
4.2.1 Sampling Based Dead Block Prediction (SDBP) 30
4.2.2 Signature Based Hit Prediction (SHiP) 31
4.2.3 Hawkeyet 32
4.2.4 Perceptron-Based Prediction 34
4.2.5 Evicted Address Filter (EAF) 35
4.3 Other Prediction Metrics.uvueininn i 36

4.3.1 Economic Value Added (EVA) 37

Richer Considerations 39

5.1 Cost-Aware Cache Replacement 39
5.1.1 Memory Level Parallelism (MLP)......................... 41
5.2 Criticality-Driven Cache Optimizations 43
5.2.1 Critical Cache........ 43
5.2.2 Criticality-Aware Multi-Level Cache Hierarchy 44
5.3 Multi-Core-Aware Cache Management 45
5.3.1 Cache Partitioningc.ouuiiniinniiin i, 46
5.3.2 Shared-Cache-Aware Cache Replacement................. 48
5.4 Prefetch-Aware Cache Replacement........................... 49
5.4.1 Cache Pollution o i, 50
5.4.2 Deprioritizing Prefetchable Lines 51
5.5 Cache Architecture-Aware Cache Replacement 54
5.5.1 Inclusion Aware Cache Replacement 54
5.5.2 Compression-Aware Cache Replacement 55
5.6 New Technology Considerationscnn. .. 56
56,1 NVM Cachescoiiiiiiiii i, 57
5.6.2 DRAM Cachescoiiiiii i 57
Conclusions i 60

Author’s Biography 71

Preface

We have written this book for those who wish to understand the state-of-the-
art in cache replacement policies, so this book attempts to organize the space of
solutions and make sense of the many different approaches that have been explored
in the literature. In doing so, we also hope to identify trends and issues that will be
important in the future.

We have intentionally chosen to focus on algorithmic issues, so we do not go
into details about hardware implementation.

We assume that readers have a basic undergraduate understanding of computer
architecture and caches.

Akanksha Jain and Calvin Lin
May 2019

Acknowledgments

We thank Aamer Jaleel and the anonymous reviewer for their valuable feedback.
We also thank Margaret Martonosi and Michael Morgan for their encouragement in
writing this book and for helpful guidance and support throughout this process. This
effort was funded in part by NSF Grant CCF-1823546 and a gift from Intel Corpora-
tion through the NSF/Intel Partnership on Foundational Microarchitecture Research,
and it was funded in part by a grant from Huawei Technologies.

Akanksha Jain and Calvin Lin
May 2019

CHAPTER 1

Introduction

For decades now, the latency of moving data has greatly exceeded the latency of
executing an instruction, so caches, which both reduce memory latency and reduce
memory traffic, are important components of all modern microprocessors. Because
there is a general tradeoff between the size of a cache and its latency, most micro-
processors maintain a hierarchy of caches, with smaller lower-latency caches being
fed by larger higher-latency caches, which is eventually fed by DRAM. For each of
these caches, effectiveness can be measured by its hit rate, which we define to be £,
where s is the number of memory requests serviced by the cache and r is the total
number of memory requests made to the cache.

There are several methods of improving a cache’s hit rate. One method is to
increase the size of the cache, typically at the expense of increased latency. A second
method is to increase the associativity of the cache, which increases the number of
possible cache locations to which a cache line can be mapped. At one extreme, a
direct mapped cache (associativity of 1) maps each cache line to a single location
in the cache. At the other extreme, a fully associative cache allows a cache line to
be placed anywhere in the cache. Unfortunately, power consumption and hardware
complexity both increase as we increase associativity. The third method, which is the
subject of this book, is to choose a good cache replacement policy, which answers
the question, “When a new line is to be inserted into the cache, which line should
be evicted to make space for the new line?"

It may seem strange to write a book on cache replacement, since Lazslo Be-
lady produced a provably optimal policy over five decades ago. But Belady’s policy is
unrealizable because it relies on future knowledge—it evicts the line that will be re-
used furthest in the future. Thus, over the years, researchers have explored several
different approaches to solving the cache replacement problem, typically relying on
heuristics that consider frequency of access, recency of access, and more recently,
prediction techniques.

Moreover, there is the question of how cache replacement policies relate to
dead block predictors, which attempt to predict lines that will no longer be needed
in the cache. We now know that the life cycle of a cache line has multiple deci-
sion points, beginning with the insertion of the line and progressing over time to the
eventual eviction of the line, and we know that there are different techniques for

2 1. INTRODUCTION

performing actions at these different decision points. With this view, we argue that
dead block predictors are a special case of cache replacement policies, and we find
that the space of cache replacement policies is quite rich.

Finally, caches are ubiquitous in software systems as well. In fact, the first re-
placement policies were developed for the paging systems of operating systems, and
while there are technological differences between software caches and hardware
caches, we hope that some of the ideas in this book will prove useful for the de-
velopers of software caches, as well.

Scope This book focuses on hardware cache replacement policies for CPU data
caches. And while most of the research that we discuss is performed in the context
of last-level caches, where the benefits of intelligent cache replacement are most
pronounced, the general ideas often apply to other levels of the cache hierarchy.

Roadmap We start in Chapter 2 by defining a 2-dimensional taxonomy. The pri-
mary dimension describes the granularity of replacement decisions. A second di-
mension describes the actions that are taken at various Chapter 3 and Chapter 4 then
uses our taxonomy to describe existing replacement policies. Chapter 5 introduces
other considerations that complicate cache replacement, including data prefetchers,
shared caches, variable miss costs, compression, and new technologies. We conclude
in Chapter 6 by using the results of the Cache Replacement Championship held in
2017 to encapsulate recent trends in cache replacement, before stepping back and
taking stock of larger trends and challenges for future research.

CHAPTER 2

A Taxonomy of Cache
Replacement Policies

To both organize this book and to organize the many ideas that have been studied
over several decades, we present a taxonomy of solutions to the cache replacement
problem. Our taxonomy is built on the observation that cache replacement policies
solve a prediction problem, where the goal is to predict whether any given line should
be allowed to stay in cache. This decision is re-evaluated at multiple points in a cache
line’s /ifetime, which begins when the line is inserted into the cache and ends when
the line is evicted from the cache.

Therefore, in our taxonomy, we first divide cache replacement policies into two
broad categories based on the granularity of their insertion decisions. Polices in the
first category, which we refer to as Coarse-Grained policies, treat all lines identically
when they are inserted into the cache and only differentiate among lines based on
their their behavior while they reside in the cache. For example, as a line resides in
the cache, its priority might be increased each time it is reused. By contrast, Fine-
Grained policies distinguish among lines when they are inserted into the cache (in
addition to observing their behavior while they reside in the cache). To make this
distinction at the time of insertion, Fine-Grained policies typically rely on historical
information about cache access behavior. For example, if a Fine-Grained policy has
learned that a particular instruction loads lines that in the past tend to be evicted
without being reused, it can insert that line with a low priority.

To better understand our taxonomy, it is useful to understand that replacement
policies are typically implemented by associating a small amount of replacement state
with each cache line:

« Insertion Policy: How does the replacement policy initialize the replacement
state of a new line when it is inserted into the cache?

* Promotion Policy: How does the replacement policy update the replacement
state of a line when it hits in the cache?

« Aging Policy: How does the replacement policy update the replacement state
of a line when a competing line is inserted or promoted?

4 2. ATAXONOMY OF CACHE REPLACEMENT POLICIES

History . . .
«——— Insertion Promotion Eviction
Policy Policy Policy
— —t— —
Aging Aging
Time -

Figure 2.1: Operations of a Replacement Policy During a Cache Line’s Lifetime.

« Eviction Policy: Given a fixed number of choices, which line does the replace-
ment policy evict?

With this view of the lifetime of a cache line, we can see that Coarse-Grained
policies treat all cache lines identically on insertion, so they primarily rely on clever
aging and promotion policies to manipulate replacement priorities. By contrast,
Fine-Grained policies employ smarter insertion policies. Of course, Fine-Grained
policies also need appropriate aging and promotion to update replacement state be-
cause not all behavior can be predicted at the time of insertion.

We now discuss these two classes in more detail.

2.1 COARSE-GRAINED POLICIES

Coarse-Grained policies treat all lines identically when they are first inserted into
the cache, and they distinguish cache-friendly lines from cache-averse lines by ob-
serving reuse behavior while the line resides in the cache. We further divide the
Coarse-Grained policies into three classes based on the metric they use to differen-
tiate cache-resident lines. The first class, which includes the vast majority of Coarse-
Grained policies, describes policies that order cache lines based on their recency of
access. The second class includes policies that order cache lines based on their fre-
quency of access. Finally, policies in the third class monitor cache behavior over time
to dynamically choose the best Coarse-Grained policy for a given time period.

Recency-Based Policies Recency-Based Policies order lines based on each line’s
latest reference within its lifetime. To arrive at this ordering, Recency-Based policies
maintain a conceptual recency stack that provides the relative order in which lines
were referenced. Different policies exploit recency information in different ways. For
example, the commonly-used LRU policy (and its variants) preferentially evict least
recently used lines, whereas policies such as MRU preferentially evict most recently
used lines; other policies exploit intermediate solutions. We discuss such policies in
Section 3.1.

2.2. FINE-GRAINED POLICIES 5

We further divide Recency-Based Policies based on their definition of the life-
time during which recency behavior is observed. The first class, which includes the
vast majority of Recency-Based policies, describes policies that end a line’s lifetime
when it is evicted from the cache. We consider such policies to have a fixed lifetime.
The second class includes policies that extend a cache line’s lifetime beyond evic-
tion by introducing a temporary structure that gives lines with longer reuse distance
a second chance to receive cache hits. We say that such policies have an extended
lifetime.

Frequency-Based Policies Frequency-Based Policies maintain_ffequency coun-
ters to order lines based on the frequency with which they are referenced. Different
replacement policies use different strategies to update and interpret these frequency
counters. For example, some policies increase the counters monotonically, while
others age the counters (decrease their values) as time passes by. As another example,
some policies evict lines with the lowest frequency, while others evict lines whose
frequency satisfies some pre-defined criterion. We discuss representative solutions
in Section 3.2.

Hybrid Policies Since different Coarse-Grained policies work well for differ-
ent cache access patterns, hybrid policies dynamically choose among a few pre-
determined Coarse-Grained policies to adapt to phase changes in a program’s ex-
ecution. In particular, hybrid policies observe the hit rate of a few candidate Coarse-
Grained policies during an evaluation period and use this feedback to choose the
best Coarse-Grained policy for future accesses. Adaptive policies are advantageous
because they help overcome pathologies of individual Coarse-Grained policies.
In Chapter 3, we will see that state-of-the-art hybrid policies modulate between
Coarse-Grained policies that use different insertion priorities, and we note that de-
spite the change in insertion priority over time, such policies are still coarse-grained
because within a time period, all lines are treated identically.

2.2 FINE-GRAINED POLICIES

Fine-Grained policies distinguish among lines when they are inserted into the cache.
They make these distinctions by using information from a cache line’s previous life-
times. For example, if a line has in the past receive no hits, then it can be inserted
with low priority. Since remembering the past behavior of @// cache lines is infeasi-
ble, Fine-Grained policies typically remember caching behavior for groups of lines.
For example, many policies combine into one group of cache lines that were last
accessed by the same load instruction.

Of course, one consideration for all Fine-Grained policies is the metric that
is used to distinguish these groups at the time of insertion. We divide Fine-Grained

6 2. ATAXONOMY OF CACHE REPLACEMENT POLICIES

policies into two broad categories based on the metric used: (1) C/assification-Based
Policies associate with each group one of two possible predictions, namely, cache-
friendly and cache-averse; (2) Reuse Distance-Based Policies try to predict detailed
reuse distance information for each group of cache lines. These two categories define
extreme ends of a spectrum, where policies on one end of the spectrum have just two
possible predicted values, and policies on the other end of the spectrum have many
possible predicted values; many policies will lie in the middle by predicting one of,
say, four or eight possible values. Finally, Beckmann and Sanchez propose novel
metrics Beckmann and Sanchez [2017], which we discuss under a third category.

Classification-Based Policies Classification-Based policies classify incoming
cache lines into two categories: Cache-friendly lines or cache-averse. The main idea
is to preferentially evict cache-averse lines to leave more space for cache-friendly
lines, so cache-friendly lines are inserted with higher priority than cache-averse
lines. A secondary ordering is maintained among cache-friendly lines, typically based
on recency. Classification-based policies are widely regarded as state-of-the-art be-
cause (1) they can exploit a long history of past behavior to take smarter decisions for
the future, (2) they can accommodate all kinds of cache access patterns. We discuss
these policies in Section 4.2.

Reuse Distance-Based Policies Reuse Distance-Based Policies predict detailed
reuse distance information for incoming lines. Lines that exceed the expected reuse
distance without receiving hits are evicted from the cache. These policies can be
viewed as predictive variants of either Recency-Based Policies or Frequency-Based
Policies, because both Recency-Based and Frequency-Based policies implicitly esti-
mate reuse distances (via recency and frequency, respectively) by monitoring a cache
line’s reuse behavior while it is cache-resident. The explicit prediction of reuse dis-
tances using historical information presents unique advantages and disadvantages,
which we discuss in Section 4.1.

2.3 DESIGN CONSIDERATIONS

The primary goal of replacement policies is to increase cache hit rates, and many
design factors contribute towards achieving a higher hit rate. We outline three such
factors below:

* Granularity: At what granularity are lines distinguished at the time of insertion?
Are all cache lines treated the same, or are they assigned different priorities
based on historical information?

« History: How much historical information does the replacement policy utilize
in making its decisions?

2.3. DESIGN CONSIDERATIONS

Replacement

Policies

Fine-Grained
Policies

Coarse-Grained

Policies

. Economic Reuse . .

Recency Frequency Hybrid Value Distance Classification
LRU LFU ARC [FAST’03] EVA [HPCA'17] Timekeeping DBCP [1SCA’01]
EELRU FBR DIP [1SCA'07] [ISCA’02] EAF [PACT’12]
[Sigmetrics’99] [Sigmetrics’90] DRRIP [ISCA’10] AIP [1CCD’05] SDBP [MICRO’10]
SegLRU, 2Q [VLDB’94] ETA [1cCD’07] SHiP [MICRO"11]
[Computer’94] LFRU [ToC’01] Leeway EAF [PACT12]
LIP [1SCA’07] [PACT’17] Hawkeye [1SCA'16]

awkeye g

Shepherd Cache
st MPPPB
SRRIP [ISCA’10] [MICRO’17]
BRRIP [1scA’10]
PDP [MICRO’12] Finer granularity
GIPPR [MICRO’13] Longer History

More Access Patterns

Figure 2.2: A Taxonomy of Cache Replacement Policies.

« Access Patterns: How specialized is the replacement policy to certain access
patterns? s it robust to changes in access patterns or to mixes of different access
patterns?

Figure 2.2 summarizes our complete taxonomy and shows how different classes
of replacement policies address these design factors. In general, the trend, as we
move to the right of the figure, which generally corresponds with newer policies, is
towards finer-grained solutions that use longer histories and that can accommodate a
wide variety of access patterns. The importance of predicting cache behavior at fine
granularity can be gauged by observing that the top four solutions in the recent Cache
Replacement Championship (2017) were all fine-grained. Fine-grained predictions
give state-of-the-art Fine-Grained policies two advantages. First, they allow Fine-
Grained policies to only dedicate cache space to lines that are most likely to ben-

7

8 2. ATAXONOMY OF CACHE REPLACEMENT POLICIES

efit from caching; by contrast, Coarse-Grained policies tend to repeatedly dedicate
cache resources to lines that do not yield any hits. Second, they allow Fine-Grained
policies to dynamically determine access patterns for different groups of lines; by
contrast, Coarse-Grained policies assume that the entire cache follows a uniform
cache access pattern.

Among Fine-Grained policies, the trend is towards using longer histories as the
state-of-the-art Fine-Grained policy Jain and Lin [2016] samples information from
a history that is 8x the size of the cache (see Chapter 4). The use of long histories
allows the policy to detect cache-friendly lines that have long-term reuse, which
would otherwise be obfuscated by a long sequence of intermediate cache-averse
accesses.

CHAPTER 3

Coarse-Grained
Replacement Policies

The cache replacement literature spans 50 years, first in the context of OS page re-
placement and then in the context of hardware caches. During this time, most re-
search has focused on the development of smarter Coarse-Grained policies, which
can perhaps be explained by the simplicity of these policies: Each cache line is asso-
ciated with a small amount of replacement state, which is initialized uniformly for all
newly inserted lines and then manipulated using simple operations as the lines are
reused.

In this chapter, we discuss key advances in Coarse-Grained policies. We di-
vide Coarse-Grained policies into three classes based on the manner in which they
distinguish lines after their insertion into the cache. The first class, which includes
the vast majority of Coarse-Grained policies, uses recency information to order
lines (Recency-Based Policies). The second class instead uses frequency to order
lines (Frequency-Based Policies). Finally, the third class (Hybrid polices) dynamically
chooses among different Coarse-Grained replacement policies.

One running theme in the design of Coarse-Grained policies is the recognition
of three commonly observed cache access patterns, namely, recency-friendly ac-
cesses, thrashing accesses Denning [1968], and scans Jaleel et al. [2010b]. Recency-
friendly accesses occur when the working set of the application is small enough to
fit in the cache, such that the reuse distance of most memory references is smaller
than the size of the cache. By contrast, thrashing accesses occur when the working
set of the application exceeds the size of the cache, such that the reuse distance of
most memory references is greater than the size of the cache. Finally, scans are a se-
quence of streaming accesses that never repeat. As we will see in this chapter, almost
all Coarse-Grained replacement policies are optimized specifically for these access
patterns or for mixes of these three access patterns.

3.1 RECENCY-BASED POLICIES

Recency-based policies prioritize lines based on recency information. The Least Re-
cently Used (LRU) policy Mattson et al. [1970] is the simplest and most widely used

10 3. COARSE-GRAINED REPLACEMENT POLICIES

of these policies. On a cache eviction, the LRU policy simply evicts the oldest line
among a set of given candidates. To find the oldest line, the LRU policy conceptually
maintains a recency stack, where the top of the stack represents the most recently
used (MRU) line, and the bottom of the stack represents the least recently used (LRU)
line. This recency stack can be maintained either precisely or approximately Handy
[1998] by associating with each line a counter and updating it as shown in Table 3.1.

Table 3.1: The Least Recently Used (LRU) Policy

Insertion Promotion Victim Selection

MRU position | MRU position | Move 1 position towards LRU LRU position

Thrashing Access Pattern: A, B, C, A, B, C

Accesses A B C A B C

Cache contents

after latest access (A, _) (A, B) (C,B) (C,A) (B,A) B, O)

Miss Miss Miss Miss

Meiss MISS (EvictA) (EvietB) (EvictC) (EvictA)

S
rd

Time

Figure 3.1: An example of thrashing. The LRU policy produces no cache hits when the
access pattern cycles through a working set (3 in this example) that is larger than the cache
capacity (2 in this case).

LRU performs well when there is temporal locality of reference, that is, when
data that was used recently is likely to be reused in the near future. But it performs
poorly for two types of access patterns. First, it can be pessimal when the applica-
tion’s working set size exceeds the cache size, leading to a phenomenon known as
thrashing Denning [1968] (see Figure 3.1). Second, LRU performs poorly in the pres-
ence of scans because it caches more recently used scans at the expense of older lines
that are more likely to be reused.

3.1.1 VARIANTS OF LRU

We now describe some of the notable variants of LRU that detect and accommodate
thrashing or streaming accesses.

3.1. RECENCY-BASED POLICIES 11
Thrashing Access Pattern: A, B, C, A, B, C

Accesses A B C A B C

Cache contents

after latest access (A,) (A,B) (C,B) (C.A) (B, A) B,0)

. . Miss) Miss Miss
Miss Miss — guiceBy M (BvictC) (Evict B)
Time

Figure 3.2: The MRU policy avoids thrashing by caching a portion of the working set. In
this example, the MRU policy is able to cache A even though the working set size exceeds
the cache capacity of 2 lines.

Most Recently Used (MRU) The Most Recently Used Policy addresses thrashing
by evicting new lines to retain old lines. Thus, when the working set is larger than the
cache, it is able to retain a portion of the working set. For example, Figure 3.2 shows
that for the thrashing access pattern shown in Figure 3.1, MRU improves upon LRU’s
hit rate by caching a portion of the working set—in this example never evicting line
A. Table 3.1.1 shows that the MRU policy is identical to LRU, except that it evicts
the line at the MRU position instead of the LRU position.

Table 3.2: The Most Recently Used (LRU) Policy

Insertion Promotion Victim Selection

MRU position | MRU position | Move 1 position towards LRU MRU position

While MRU is ideal for thrashing accesses, it performs poorly in the presence of
recency-friendly accesses, and it adapts poorly to changes in the application’s work-
ing set, as it is unlikely to cache anything from the new working set.

Early Eviction LRU (EELRU) The EELRU policy also avoids thrashing Smarag-
dakis et al. [1999]. The main idea is to detect cases where the working set size ex-
ceeds the cache size, at which point a few lines are evicted early. Thus, early eviction
discards a few randomly chosen lines so that the remaining lines can be managed ef-
fectively by the LRU policy. More specifically, EELRU evicts the LRU line when the
working set fits in the cache, but it evicts the e** most recently used line when it ob-

12 3. COARSE-GRAINED REPLACEMENT POLICIES

serves that too many lines are being touched in a roughly cyclic pattern that is larger
than main memory.

=<— LRU memory == early region == lateregion -~ - ~->

region (potential
| / i / / / / eviction points)
M

|
1 e
(MRU page) (early eviction point) (main memory size)

Figure 3.3: The EELRU replacement policy.

Figure 3.3 shows that EELRU distinguishes among three regions of the recency
axis. The left endpoint of the recency axis represents the most recently used (MRU)
line, and the right endpoint represents the least recently used (LRU) line. The LRU
memory region consists of the most recently used lines, and positions e and M mark
the beginning of the early eviction region and late eviction region, respectively. On a
miss, the EELRU policy either evicts the line at the least recently used position (late
region) or the line at the ¢** position (early region).

To decide whether to use early eviction or LRU eviction, EELRU tracks the
number of hits received in each region. If the distribution is monotonically decreas-
ing, then EELRU assumes that there is no thrashing and evicts the LRU line. But if
the distribution shows more hits in the late region than the early region, then EELRU
evicts from the early region, which allows lines from the late region to remain longer
in the cache. Table 3.3 summarizes the operation of EELRU.

Table 3.3: The Early Eviction LRU (EELRU) Policy

Insertion Promotion Aging Victim Selection
MRU position | MRU position | Move 1 position | Choose between LRU or
towards LRU e'" recently used line

Segmented LRU (Seg-LRU) Segmented LRU handles scanning accesses by pref-
erentially retaining lines that have been accessed at least twice Karedla et al. [1994].
Seg-LRU divides the LRU stack into two logical segments (see Figure 3.4), namely,
the probationary segment and the protected segment. Incoming lines are added to

3.1. RECENCY-BASED POLICIES 13

the probationary segment and are promoted to the protected segment when they re-
ceive a hit. Thus, lines in the protected segment have been accessed at least twice,
and scanning accesses are never promoted to the protected segment. On an eviction,
the least recently used line from the probationary segment is selected.

Most recently used
Hits
Protected segment
Least recently used
) Discarded lines
Misses |
Y
Most recently used
. Hits
Probationary segment >
Least recently used

l Discarded lines

Figure 3, Logical flow of SLRU cache
lines.

Figure 3.4: The Seg-LRU replacement policy.

Table 3.4 summarizes the operation of Seg-LRU. New lines are inserted at the
MRU position in the probationary segment, and on a cache hit, lines are promoted
to the MRU position in the protected segment. Because the protected segment is
finite, a promotion to the protected segment may force the migration of the LRU line
in the protected segment to the most recently used (MRU) end of the probationary
segment, giving this line another chance to receive a hit before it is evicted from the
probationary segment. Thus, Seg-L.LRU can adapt to changes in the working set as old
lines eventually get demoted to the probationary segment.

Table 3.4: The Seg-LRU Policy

Insertion Promotion Victim Selection

MRU position in MRU position in | Increment recency | LRU position fiiom
probationary segment | protected segment counter. probationary segment

14 3. COARSE-GRAINED REPLACEMENT POLICIES

A variant of the Seg-LRU policy won the First Cache Replacement Champi-
onship Gao and Wilkerson [2010].

3.1.2 BEYOND LRU: INSERTION AND PROMOTION POLICIES

Qureshi et al., observe that variants of Recency-Based policies can be realized by
modifying the insertion policy Qureshi et al. [2007], while keeping the eviction policy
unchanged (evict the line in the LRU position). For example, MRU (Table 3.1.1) can
be emulated by using the ZRU Insertion policy (LIP) Qureshi et al. [2007], which
inserts new lines in the LRU position instead of the MRU position (see Table 3.5)).

Table 3.5: The LRU Insertion Policy (LIP) emulates MRU.

Insertion Promotion Victim Selection

LRU position | MRU position | Move 1 position towards LRU LRU position

This insight spurred the design of replacement policies with new insertion and
promotion policies. By interpreting recency information in different ways, these poli-
cies can address much broader classes of access patterns than LRU. In this section,
we discuss some notable solutions in this direction. Since applications typically con-
sist of many different access patterns, none of these policies is sufficient on its own
and is typically used as part of a hybrid solution, which we discuss in Section 3.3.

Bimodal Insertion Policy (BIP) Since thrash-resistant policies like LIP (and MRU)
cannot adapt to changes in the working set during phase changes, BIP Qureshi et al.
[2007] modifies LIP such that lines are occasionally (with a low probability) inserted
in the MRU position. BIP maintains the thrash-resistance of LIP because it inserts in
the LRU position most of time, but it can also adapt to phase changes by occasionally
retaining newer lines. Table 3.6 shows that BIP inserts in the MRU position with a
probability of ¢, which is set to be 1/32 or 1/64. An e value of 1 inserts in the MRU
position (mimicking LRU’s insertion policy), and an ¢ value of 0 inserts in the LRU
position (mimicking LIP’s insertion policy). Thus, from an implementation point of
view, BIP’s ¢ parameter unifies all insertion policies that lie at different points in the
spectrum between LRU and MRU insertion.

Static Re-Reference Interval Prediction (SRRIP) Jaleel et al., observe that
cache replacement can be thought of as a Re-Reference Interval Prediction (RRIP)
problem, and the conventional LRU chain can be instead thought of as an RRIP
chain Jaleel et al. [2010b]: While a line’s position in the LRU chain represents the
amount of time since its last use, a line’s position in the RRIP chain represents the

3.1. RECENCY-BASED POLICIES 15
Table 3.6: The Bimodal Insertion Policy (BIP)

Insertion Promotion Victim Selection

MRU position | MRU position | Move 1 position towards LRU LRU position
with probability e

order in which it is predicted to be re-referenced Jaleel et al. [2010b]. In particular,
the line at the head of the RRIP chain is predicted to be re-referenced the soonest
(shortest re-reference interval), while the line at the tail of the RRIP chain is pre-
dicted to be reused furthest in the future (largest re-reference interval). On a cache
miss, the line at the tail of the RRIP chain is replaced.

With this view, we can see that the LRU policy predicts that new lines will have
a near-immediate re-reference interval (insert at the head of the RRIP chain), while
the thrash-resistant LIP policy predicts that new lines will have a distant re-reference
interval (insert at the tail of the RRIP chain). Figure 3.5 illustrates this point with an
RRIP chain that is represented using a 2-bit Rereference Prediction Value (RRPV):
00 corresponds to the nearest re-reference interval prediction, 11 corresponds to a
distant re-reference interval prediction.

(LRU) (SRRIP) (MRU)
Recency-Friendly Scan-Resistant Thrash-Resistant
Insertion Insertion Insertion

Age m Age /‘L Age mEviction
> 1 > > 3 >

2

Figure 3.5: An example RRIP chain with 2-bit RRPV values.

Jaleel et al., show that instead of predicting re-reference intervals that lie at
the extreme ends of the RRIP chain, there is great benefit in predicting an interme-
diate re-reference interval, which allows the replacement policy to accommodate
a mixture of different access patterns. In particular, scans—a burst of references to
data that is not reused—disrupt recency-friendly policies, such as LRU, because they
discard the working set of the application without yielding any cache hits. To accom-
modate mixes of recency-friendly accesses and scans, Jaleel et al., propose SRRIP,
which gives incoming lines an intermediate re-reference interval and then promotes

16 3. COARSE-GRAINED REPLACEMENT POLICIES

lines to the head of the chain if they are reused. Thus, SRRIP adds scan-resistance
to recency-friendly policies, as it prevents lines with a distant re-reference interval
(scans) from evicting lines with a near re-reference interval.

In the most general case, SRRIP associates an M-bit value per cache block to
store its Rereference Prediction Value (RRPV), but Jaleel et al., find that a 2-bit RRPV
value is sufficient to provide scan-resistance. Table 3.7 summarizes the operations
of SRRIP with a 2-bit RRPV value.

Table 3.7: Static Re-Reference Interval Prediction Policy (SRRIP)

Insertion Promotion Victim Selection

RRPV=2 | RRPV=0 Increment all RRPVs RRPV =3
(if no line with RRPV = 3)

Like LRU, SRRIP thrashes the cache when the re-reference interval of all
blocks is larger than the available cache. To add thrash-resistance to scan-resistant
policies, Jaleel et al., propose Bimodal RRIP (BRRIP), a variant of BIP Qureshi et al.
[2007] that inserts a majority of cache blocks with a distant re-reference interval
prediction (i.e., RRPV of 3), and it infrequently inserts cache blocks with an inter-
mediate re-reference interval prediction (i.e., RRPV of 2). BRRIP’s operations are
summarized in Table 3.8.

Table 3.8: Bimodal Re-Reference Interval Prediction Policy (BRRIP)

Insertion Promotion Victim Selection
RRPV=3 for most insertions, RRPV=0 Increment all RRPVs RRPV=3
RRPV=2 with probability e (if no line with RRPV = 3)

Since applications can alternate between recency-friendly and thrashing work-
ing sets, neither SRRIP nor BRRIP is sufficient on its own. In Section 3.3, we will
discuss hyrbid versions of SRRIP and BRRIP that can address all three of the com-
mon access patterns (recency-friendly, thrashing and scans), yielding performance
improvements for many applications.

Protecting Distance-Based Policy (PDP) The PDP policy Duongetal. [2012]isa
generalization of RRIP as it dynamically estimates a Profecting Distance (PD), and all
cache lines are protected for PD accesses before they can be evicted. The Protecting
Distance is a single value that is used for all lines inserted into the cache, but it is
continually updated based on the application’s dynamic behavior.

3.1. RECENCY-BASED POLICIES 17

To estimate the PD, PDP computes the reuse distance distribution (RDD),
which is the distribution of reuse distances observed within a recent interval of the
program’s execution. Using the RDD, the Protecting Distance is defined to be the
reuse distance that covers a majority of lines in the cache, such that most lines are
reused at the PD or smaller distance. For example, Figure 3.6 shows the RDD for
436.cactusADM, where the PD is set to be 64. The PD is recomputed infrequently
using a small special-purpose processor.

403.gcc

450.s0plex]\ 464.h264ref 482.sphinx3

l
N

W \ T

6 0 64 128 192 256 O 84 128 192 256 O 64 128 192 256

436.cactusADM |
!

R

Y\

0 64 128 192 256 O 64 128 192 2

i

Figure 3.6: Protecting Distance covers a majority of lines (for example, 64 for 436.cac-
tusADM).

More concretely, on an insertion or promotion, each cache line is assigned a
value to represent its remaining PD (RPD), which is the number of accesses for which
it remains protected; this value is initialized to the PD. After each access to a set, the
RPD of each line in the set is aged by decrementing the RPD value (saturating at 0).
A line is protected only if its RPD is larger than 0. An unprotected line is chosen as
the victim.

Genetic Insertion and Promotion for PseudoLRU Replacement (GIPPR) Tak-
ing inspiration from RRIP, Jiménez et al., observe that there are many degrees of free-
dom in the choice of insertion and promotion, so they generalize modifications to
insertion and promotion policies using the concept of an /zsertion/Promotion Vector
(IPV) Jimeénez [2013]. The IPV specifies a block’s new position in the recency stack
both when it is inserted into the cache and when it is promoted from a different po-
sition in the recency stack. In particular, for a k-way set-associative cache, an IPV is
a k + 1-entry vector of integers ranging from 0 to k£ — 1, where the value in the ' po-
sition represents the new position to which a block in position i should be promoted
when it is re-referenced. The k' entry in the IPV represents the position where a
new incoming block should be inserted. If the new position in the recency stack is
less than the old position, then blocks are shifted down to make room; otherwise
blocks are shifted up to make room.

18 3. COARSE-GRAINED REPLACEMENT POLICIES

Q0D DD LD (D)D) DD

insertion eviction

Figure 2: Transition Graph for LRU. A solid edge points to the new position for an accessed or inserted block. A dashed edge
shows where a block is shifted when another block is moved to its position.

insertion eviction

Figure 3: Transition Graph for Vector [001030121051001 11 13]

Figure 3.7: IPV for LRU (top), and the IPV evolved using genetic algorithm (bottom).

Figure 3.7 shows two sample IPVs, with the first one representing LRU, and the
second one representing a more sophisticated insertion and promotion strategy.

While the generalized notion of IPVs is quite powerful, the number of possible
IPVs grows exponentially, (k**! possible IPVs for a k-way cache), so Jiménez et al.,

3.1. RECENCY-BASED POLICIES 19

use an offline genetic search to evolve good IPVs for the SPEC 2006 benchmarks.
The genetic search yielded the IPV shown in the bottom part of Figure 3.7.

Just as there is no single insertion policy or RRIP policy that works for all work-
loads, the best IPV differs for each workload. Therefore, Jiménez et al., present a
hybrid solution that uses set dueling (described in Section 3.3) to consider multiple
[PVs.

3.1.3 EXTENDED LIFETIME RECENCY-BASED POLICIES

Extended Lifetime Policies are a special class of Recency-Based policies that artifi-
cially extend the lifetimes of some cache lines by storing them in an auxiliary buffer or
a victim cache. The key motivation here is to defer eviction decisions to a later time
when a more informed decision can be made. This strategy allows Coarse-Grained
policies to slightly expand the reuse window of cache hits to be larger than the size
of the cache.

Shepherd Cache The Shepherd Cache mimics Belady’s optimal policy Rajan and
Govindarajan [2007]. Since Belady’s policy requires knowledge of future accesses,
Rajan et al., emulate this future lookahead with the help of an auxiliary cache, called
the Shepherd Cache. In particular, the cache is logically divided into two compo-
nents, the Main Cache (MC) which emulates optimal replacement, and the Shep-
herd Cache (SC) which uses a simple FIFO replacement policy. The SC supports
optimal replacement for the MC by providing a lookahead window. New lines are
initially buffered in the SC, and the decision to replace a candidate from the MC is
deferred until the new line leaves the SC. While the new line is in the SC, information
is gathered about the reuse order of replacement candidates in the MC. For example,
candidates that are reused earlier become less likely candidates for eviction since Be-
lady’s policy evicts the lines that is reused furthest in the future. When the new line
is evicted from the SC (due to other insertions in the SC), a replacement candidate
is chosen by either picking a candidate from the MC that hasn’t been reused within
the lookahead window, or the candidate that was reused last; if all lines in the MC
were reused before the SC line was reused, then the SC line replaces itself. Though
SC and MC are logically separate, Rajan et al., avoid any movement of data from one
component to another by organizing the cache such that the two logical components
can be organized as a single physical structure.

Thus, the Shepherd Cache emulates a superior replacement scheme for lines in
the MC cache by extending their lifetime with the help of the Shepherd Cache. The
tradeoff for Shepherd Cache is that replacement in the MC approaches true optimal-
ity with high lookaheads, and the higher lookahead comes at the cost of a diminished
Main Cache capacity. Unfortunately, subsequent work Jain and Lin [2016] has shown

20 3. COARSE-GRAINED REPLACEMENT POLICIES

that to approach the behavior of Belady’s MIN policy, the policy needs a lookahead
of 8 the size of the cache.

3.2 FREQUENCY-BASED POLICIES

Instead of relying on recency, Frequency-Based policies use access frequency to
identify victims, so lines that are accessed more frequently are preferentially cached
over lines that are accessed less frequently. This approach is less susceptible to in-
terference from scans and has the benefit of accounting for reuse behavior over a
longer period of time, as opposed to just the last use.

The simplest Frequency-Based policy is the Least Frequently Used (LFU) pol-
icy Coffman and Denning [1973], which associates a frequency counter with each
cache line. The frequency counter is initialized to O when the line is inserted into
the cache, and it is incremented each time the line is accessed. On a cache miss, the
candidate with the lowest frequency is evicted. Table 3.9 summarizes these opera-
tions.

Table 3.9: Least Frequently Used Policy (LFU)

Insertion Promotion Aging Victim Selection
Freq =0 | Increment Freq | n/a Least Frequency

Unfortunately, Frequency-Based policies adapt poorly to changes in the ap-
plication’s phases because lines with high frequency counts from a previous phase
remain cached in new phases even when they are no longer being accessed. To ad-
dress this issue, several solutions Lee et al. [2001], O’Neil et al. [1993], Robinson
and Devarakonda [1990], Shasha and Johnson [1994] augment frequency informa-
tion with recency information to allow old lines to age gracefully. Here we discuss
two such solutions.

Frequency-Based Replacement (FBR) FBR Robinson and Devarakonda [1990]
notes that Frequency-Based methods are susceptible to misleadingly high counter
values from short bursts of temporal locality. Therefore, FBR factors out locality from
frequency counts by selectively incrementing frequency counters. In particular, FBR
does not increment frequency counters for the top portion of the LRU stack, which
is known as the new section. Thus, short bursts of temporal locality do not affect the
frequency counters. Figure 3.8 illustrates this strategy.

Unfortunately, this strategy has the disadvantage that once lines age out of the
new section, even frequently used lines are evicted quickly because they do not have
enough time to build up their frequency counts. Therefore, FBR further restricts

3.2. FREQUENCY-BASED POLICIES 21

count := count+!

‘ {count
unchanged)
MRU[_l [| et

[J | } o]]LRu
new section T
boundary.

count := 1
MISS

Figure 3.8: FBR does not increment frequency counters in the new section.

replacement to the least frequently used line in an o/d section, which consists of lines
that have not been recently accessed (bottom of the LRU stack). The remaining part
of the stack is called the middle section, which gives frequently used lines sufficient
time to build up their frequency values.

Table 3.10 summarizes the operation of FBR policy.

Table 3.10: The Frequency-Based Replacement Policy (FBR)

Insertion Promotion Aging Victim Selection
MRU position MRU position Increment by 1 | LFU line in old
Freq=0 Freq++ if not in new section section

Least Recently/Frequently Used (LRFU) The LRFU policy Lee et al. [2001]
builds on the observation that the LRU and LFU (Least Frequently Used) policies
represent extreme points of a spectrum of policies that combine recency and fre-
quency information (see Figure 3.9). Using a new metric called Combined Recency
and Frequency (CRF), LRFU explores this spectrum by allowing a flexible tradeoff
between recency and frequency.

Like Frequency-Based policies, LRFU accounts for each past reference to the
block, but unlike Frequency-Based policies, LRFU weighs the relative contribution
of each reference by a weighing function. In particular, LRFU computes for each
block a CRF value, which is the sum of the weighing function F(x) for each past
reference, where z is the distance of the past reference from the current time. Thus,
for emulating purely Frequency-Based policies, the weighing function can give equal
priority to all past references, and for emulating Recency-Based policies, the weigh-
ing function can give high priority to the last reference of the line.

22 3. COARSE-GRAINED REPLACEMENT POLICIES

)
The F(x) = 1 (LFU Extreme)
. nqS"p‘ec{ru“rp _
(Récel]gy:’l:reqliéncy} L
F(x) = (172 reme)
0 i

(amrent t’m’tx- reference tine)

Fig. 1. Spectrum of LRFU according to the function F(z) = (%)’“, where

z is (current_time — reference_time).

Figure 3.9: The LRFU replacement policy.

LRFU uses the weighing function in Equation 3.1, where X is an empirically
chosen parameter. The weighing function gives exponentially lower priority to older
lines, which allows LRFU to retain the benefits of Frequency-Based replacement,
while supporting graceful aging.

Flr) = ()™ (3.1)

p

Table 3.11 summarizes the operation of LRFU policy for a block b at different
decision points.

Table 3.11: The Least Recently/Frequently Used (LRFU) Policy

Insertion Promotion Aging Victim Selection
CRF(b) = F(0) CRF(b) = F(0)+ Line with min
LAST(b) =t. | F(t.— LAST(b)) x CRE;45:(b) | te =t.+1 CRF value
LAST(b) = t.

The performance of LRFU heavily depends on), so the subsequently devel-
oped ALRFU policy dynamically adjusts the value of lambda Lee et al. [1999].

3.3. HYBRID POLICIES 23
3.3 HYBRID POLICIES

Hybrid policies Jaleel et al. [2010b], Qureshi et al. [2006, 2007] recognize that dif-
ferent workloads, or even different phases within the same workload, benefit from
different replacement strategies. For example, if a program alternates between small
and large working sets, it will benefit from a recency-friendly policy when the work-
ing set it small and from a thrash-resistant policy when the working set is large. Thus,
hybrid policies assess the requirements of the application’s current working set and
dynamically choose from among multiple competing policies.

The two main challenges for hybrid policies are (1) accurately identifying the
policy that will be the most beneficial and (2) managing multiple policies at a low
hardware cost. We now discuss two solutions that address these challenges.

3.3.1 ADAPTIVE REPLACEMENT CACHE (ARC)

The Adaptive Replacement Cache combines the strengths of recency and frequency
by dynamically balancing recency- and frequency-based evictions. In particular,
ARC keeps track of two additional tag directories, L1 and L2, which together re-
member twice as many elements as the baseline cache can accommodate. The L1
directory maintains recently used pages that have been seen only once, and the L2
directory maintains recently accessed pages that have been accessed at least twice.
The goal of ARC is to dynamically choose the appropriate amount of cache to dedi-
cate to L1 and L2 (see Figure 3.10).

More concretely, ARC splits the baseline cache directory into two lists, T1 and
T2, for recently and frequently referenced entries, respectively. T1 and T2 are ex-
tended with ghost lists (B1 and B2, respectively), which track recently evicted cache
entries from T1 and T2, respectively. Ghost lists only contain tag metadata, not
the actual data, and entries are added to ghost lists when the corresponding data is
evicted from the cache. T1 and B1 together form the Recency-Based L1 directory,
and T2 and B2 together form the Frequency-Based L2 directory.

ARC dynamically modulates the cache space dedicated to T1 and T2. In gen-
eral, hits in B1 increase the size of T1 (proportion of cache dedicated to recently-
accessed elements), and hits in B2 increase the size of T2 (proportion of cache ded-
icated to elements accessed at least twice). Evictions from T1 and T2 get added to
B1 and B2, respectively.

3.3.2 SET DUELING

An issue with hybrid policies, such as ARC, is the large overhead of maintaining ad-
ditional tag directories. Qureshi et al. introduce Set Dueling, which is an accurate
mechanism for sampling the behavior of different policies at low hardware cost. Set

24 3. COARSE-GRAINED REPLACEMENT POLICIES

. LRU
L,
DBL (2¢
|®] MRU
[o] MRU
Ly
|®] LRU

Figure 3.10: Adaptive Replacement Cache maintains two tag directories.

Dueling builds on the observation that a few randomly chosen sets can accurately
represent the behavior of different replacement policies on the entire cache. Qureshi
et al., mathematically show that for caches with 1-4 MB (1024 to 4096 sets), 64 sets
are enough to capture the behavior of the entire cache. We now discuss Set Dueling
in more detail by discussing two representative policies.

Dynamic Insertion Policy (DIP) The Dynamic Insertion Policy (DIP) combines
the benefit of recency-friendly policies and thrash-resistant policies by dynamically
modulating the insertion positions of incoming lines Qureshi et al. [2007]. In partic-
ular, DIP alternates between the recency-friendly LRU (Table 3.1) and the thrash-
resistant Bimodal Insertion Policy (Table 3.6).

To choose between the two policies, DIP uses Set Dueling to dynamically track
the hit rate of each policy. Figure 3.11 shows that DIP dedicates a few sets to LRU
(sets 0, 5, 10 and 15 in Figure 3.11) and a few sets to BIP (sets 3, 6, 9 and 12 in Fig-
ure 3.11). These dedicated sets are called Set Dueling Monitors (SDMs), while the
remaining sets are called the follower sets. The policy selection (PSEL) saturating
counter determines the winning policy by identifying the SDM that receives more
cache hits. In particular, the PSEL is incremented when the SDM dedicated to LRU
receives a hit, and it is decremented when the SDM dedicated to BIP receives a hit
(a k-bit PSEL counter is initialized to 2*~!). The winning policy is identified by the

3.3. HYBRID POLICIES 25

LEGEND

[] sets dedicated to LRU
[sets dedicated to BIP

D Follower Sets.
Policy decided by PSEL

Decides Policy for
Follower Sets

Miss in a Set
Dedicated to LRU

Miss in a Set
Dedicated to BIP

Figure 3.11: Set Dueling.

MSB of the PSEL. If the MSB of PSEL is 0, the follower sets use the LRU policy;
otherwise the follower sets use BIP. Thus, Set Dueling does not require any separate
storage structure other than the PSEL counter.

Dynamic Re-Reference Interval Policy (DRRIP) DRRIP builds on DIP to add
scan-resistance. In particular, DRRIP uses set dueling to create a hybrid of SRRIP,
which is the scan-resistant version of LRU (Table 3.7), and BRRIP, which is the scan-
resistant version of BIP (Table 3.8).

As we will see in Chapter 4, the insight behind Set Dueling has had a large im-
pact on many subsequent Fine-Grained policies, which use the notion of set sampling
to efficiently track metadata to determine fine-grained caching behavior.

26

CHAPTER 4

Fine-Grained
Replacement Policies

Fine-Grained policies differentiate cache lines at the time of insertion, and this dif-
ferentiation is typically based on eviction information from previous lifetimes of sizz-
ilar cache lines. For example, if a Fine-Grained policy learns that a line was evicted
without being reused in its previous lifetimes, then it can insert the line into the cache
with low priority. By contrast, a Coarse-Grained policy, such as LRU, will evict a line
only after it has migrated from the MRU position to the LRU position, so it forces
the line to reside in the cache for a long period of time—consuming precious cache
space—just to determine that the line should be evicted. Thus, by learning from the
behavior of previous cache lines, Fine-Grained policies can make more effective use
of the cache.

We divide Fine-Grained policies into three broad categories based on the met-
ric they use for predicting insertion priorities. The first category (Section 4.1) con-
sists of solutions that predict expected reuse intervals for incoming lines. The second
category (Section 4.2) consists of solutions that predict just a binary caching decision
(cache-friendly vs. cache-averse). The third category, which is much smaller than
the other two, includes policies Beckmann and Sanchez [2017], Kharbutli and Soli-
hin [2005] that introduces novel prediction metrics.

Fine-Grained solutions have several other design dimensions. First, since it can
be cumbersome to remember the caching behavior of individual lines across mul-
tiple cache lifetimes, these policies learn caching behaviors for groups of lines. For
example, many solutions group lines based on the address (PC) of the instruction that
loaded the line, because lines that are loaded by the same PC tend to have similar
caching behavior. Recent solutions look at more sophisticated ways to group cache
lines Jimeénez and Teran [2017], Teran et al. [2016]. A second design dimension is the
amount of history that is used for learning cache behavior.

Fine-Grained replacement policies have roots in two seemingly different con-
texts. One line of work uses prediction to identify dead blocks—blocks that will not
be used before being evicted—that could be re-purposed for other uses. For exam-
ple, one of the earliest motivations for identifying dead blocks was to use them as
prefetch buffers Hu et al. [2002], Lai et al. [2001]. Another motivation was to turn

4.1. REUSE DISTANCE PREDICTION POLICIES 27

off cache lines that are dead Abella et al. [2005], Kaxiras et al. [2001]. The second
line of work generalizes hybrid re-reference interval policies Jaleel et al. [2010b] so
that they are more learning based. Despite their different origins, these two lines of
research have converged to conceptually similar solutions.

We now discuss the different classes of Fine-Grained policies.

4.1 REUSE DISTANCE PREDICTION POLICIES

Policies based on reuse distance estimate the reuse distance of blocks, where reuse
distance can be defined in terms of the number of accesses or cycles between con-
secutive references to a block. The perfect prediction of reuse distances would be
sufficient to emulate Belady’s optimal solution, but it is difficult to precisely predict
reuse distances due to the high variation in reuse distance values. Therefore, realis-
tic solutions estimate reuse distance distributions or other aggregate reuse distance
statistics.

4.1.1 EXPIRATION-BASED DEAD BLOCK PREDICTORS

Many dead block predictors use past evictions to estimate average reuse distance
statistics, and they evict lines that are not reused within their expected reuse dis-
tances Abella et al. [2005], Faldu and Grot [2017], Hu et al. [2002], Kharbutli and
Solihin [2005], Liu et al. [2008], Takagi and Hiraki [2004].

Hu et al. learn the /ive time of cache blocks, where the live time is defined as
the number of cycles a block remains live in the cache Hu et al. [2002]. When a block
is inserted, its lifetime is predicted to be similar to its last lifetime. If the block has
stayed in the cache for twice its lifetime without receiving a cache hit, the block is
declared to be dead and is evicted from the cache.

Abella et al., use a similar dead block prediction strategy to turn off .2 cache
lines, but instead of using the number of cycles, they define reuse distance in terms of
the number of cache accesses between consecutive references Abella et al. [2005].

Kharbutli et al. use counters to track each cache line’s Access Interval Khar-
butli and Solihin [2005], where a line’s Access Interval is defined to be the number
of other cache lines that were accessed between subsequent accesses to the line.
Furthermore, they predict that a line is dead if its access interval exceeds a certain
threshold. The threshold is predicted by the Access Interval Predictor (AIP), which
tracks the access intervals of all past evictions and remembers the maximum of all
such intervals in a PC-based table.

Faldu et al., present the Leeway policy Faldu and Grot [2017], which uses
the notion of /ive distance—the largest observed stack distance in a cache line’s
lifetime—to identify dead blocks. A cache block’s live distance is learned from the
block’s previous generations, and when a block exceeds its live distance, it is pre-

28 4. FINE-GRAINED REPLACEMENT POLICIES

dicted to be dead. The live distances from past lifetimes are remembered using a
per-PC Live Distance Predictor Table (LDPT). The LDPT predicts live distances for
incoming blocks, and any block that has moved past its predicted live distance in
an LRU stack is predicted dead. To avoid the high variability in live distances across
lifetimes and across blocks accessed by the same PC, Leeway deploys two update
policies that control the rate at which live distance values in the LDPT are adjusted
based on workload characteristics. The first policy is aggressive and favors bypass-
ing, and the second policy is conservative and favors caching. Leeway uses Set Du-
eling Qureshi et al. [2007] to choose between the two policies.

4.1.2 REUSE DISTANCE ORDERING

Keramidas et al., use reuse distance predictions to instead evict the line that is ex-
pected to be reused furthest in the future Keramidas et al. [2007]. Their policy learns
a reuse distance for each load instruction (PC) and for each incoming line, it com-
putes an Estimated Time of Access (ETA), which is the sum of the current time and
the expected reuse interval. It then orders lines based on their ETA and evicts the
line with the largest ETA value.

To guard against cases where an ETA prediction is unavailable, this scheme
also tracks the line’s decay, which is an estimate of the amount of time that a line has
remained unaccessed in the cache, and it evicts a line if its decay interval is larger
than its ETA.

case 1: Arrival of
replacement = ETA clock of a new miss
tgecay T
—
e —
___4 - g_
past future /
Decay ETA
(distance to
case2: clock next access)
replacement = LRU te
cay
/ — — —
T*—————;st fawre
Decay (LRU) . ETA
time
———————————— ‘>

Figure 4.1: The ETA policy chooses between the line with the longest ETA or the one
with the largest decay.

4.2. CLASSIFICATION-BASED POLICIES 29

More concretely, Figure 4.1 shows that the replacement policy has two candi-
dates: (1) the line with the largest ETA (the ETA line), and (2) the line with the largest
Decay time (the LRU line). The line with the largest of the two values is selected for
eviction. Thus, the policy relies on ETA when available and reverts to LRU other-
wise.

4.2 CLASSIFICATION-BASED POLICIES

Classification-Based policies learn a binary classification of incoming lines: Is a cache
access likely to result in a future hit or not? Cache-friendly lines—lines that are ex-
pected to result in cache hits—are inserted into the cache with a higher priority so
that they have ample opportunity to receive a cache hit, and cache-averse lines—
lines that are not expected to result in cache hits—are inserted with a low priority so
that they can be quickly evicted without wasting cache resources.

Classification-Based policies have several advantages over other classes of re-
placement policies. Compared to Hybrid replacement policies, which make a uni-
form decision for all lines in a given time period, classification-based policies can in-
sert some lines with high-priority and others with low-priority. Compared to Reuse
Distance-Based policies, where the target is a numerical reuse distance prediction,
Classification-Based policies solve a simpler binary prediction problem.

As we will see, Classification-Based Policies have their origins in two different
bodies of literature. While SDBP Khan et al. [2010] (Section 4.2.1) builds on the
dead block prediction literature, SHiP Wu et al. [2011a] (Section 4.2.2) has roots
in the cache replacement policy literature. Interestingly, both solutions arrived at
conceptually similar ideas, and in hindsight, the two papers have collectively unified
the two areas.

We will now discuss these and other recent classification-based policies. While
there are significant differences among the policies, they all share two characteristics.
First, they all include a binary predictor that learns past caching behavior to guide the
insertion priority of individual lines. Second, they all borrow promotion, aging, and
eviction schemes from state-of-the-art Coarse-Grained policies, which help them
account for inaccurate predictions. As we describe these policies, we will consider
the following design questions:

« Which caching solution is the policy learning?

« What is the prediction mechanism, and at what granularity are the predictions
being made?

+ What is the aging mechanism for ensuring that inaccurate predictions are even-
tually evicted?

30 4. FINE-GRAINED REPLACEMENT POLICIES
4.2.1 SAMPLING BASED DEAD BLOCK PREDICTION (SDBP)

Many studies observe that because a majority of the blocks in the LL.C are dead (they
are not reused again before they are evicted), dead block prediction can be used to
guide cache replacement and early bypass of dead blocks Khan et al. [2010], Lai and
Falsafi [2000]. Lai et al., introduce the idea of using dead block predictors to prefetch
data into dead blocks in the L1 Lai and Falsafi [2000]. Their reftrace predictor pre-
dicts that if a trace of instruction addresses leads to the last access for one block, then
the same trace will also lead to the last access for other blocks. To reduce the cost
of maintaining an instruction trace for all cache blocks, Khan et al., introduce the
Sampling Based Dead Block Predictor (SDBP), which samples the caching behavior
of program counters (PCs) to determine whether an incoming block is likely to be
dead Khan et al. [2010]. Future cache accesses from PCs that are known to insert
dead blocks are bypassed so that they do not pollute the cache. Accesses from PCs
that do not insert dead blocks are inserted into the cache using some baseline policy,
namely, a random or LRU replacement policy.

Notably, SDBP learns from a decoupled sampler that is populated using a small
fraction of the cache accesses (see Figure 4.2). If a block is evicted from the sam-
pler without being reused, the corresponding PC is trained negatively; otherwise,
the predictor is trained positively. The decoupled sampler has several advantages.
First, the predictor is trained using only a small sample of all cache accesses, which
leads to a power- and space-efficient predictor design and manageable metadata in
the sampler (PCs are maintained for each sampler entry). Second, the replacement
policy of the sampler does not have to match the replacement policy of the cache.
Khan et al., use the LRU policy for the sampler, and they use random replacement
for the main cache. Finally, the associativity of the sampler is independent of the as-
sociativity of the cache, which allows for a cheaper sampler design. Khan et al., use
a 12-way sampler for a 16-way cache. Table 4.1 summarizes SDBP’s key operations.

Table 4.1: Sampling Based Dead Block Prediction (SDBP)

Insertion Promotion Victim Selectio
dead_bit = prediction | dead_bit = prediction | Increment LRU counter | Line with dead_bit :
MRU position MRU position by 1 or LRU position

Thus, to answer the questions that we outlined at the beginning of this sec-
tion: (1) SDBP learns the caching decisions of an LRU-based sampler; (2) it predicts
dead blocks (cache-averse vs. cache-friendly) using a skewed predictor design, mak-
ings these predictions at the granularity of PCs; and (3) SDBP bypasses all incoming

4.2. CLASSIFICATION-BASED POLICIES 31

L2 Cache Data access
Eycryf]'__l %mt.;d_ L2 m{sm, Last-Level Cache
g:: ict?én ¥< li.ﬁ% 0113%_.?_.]1 accesses 2048 sets, tags + data
only
Sampler
tag array
32 sets
b
Sampler
accesses
} and evictions
= Predictor
o Prediction
Table

Figure 4.2: SDBP uses a decoupled sampler to train a predictor.

blocks that are predicted to be cache-averse, with the remaining lines being managed
using the baseline replacement policy, so false positives (cache-averse blocks that are
predicted to be cache-friendly) are aged out using the baseline replacement policy,
and false negatives (cache-friendly blocks that are predicted to be cache-averse) do
not get any opportunity to see reuse.

4.2.2 SIGNATURE BASED HIT PREDICTION (SHIP)

Like SDBP, SHiP Wu et al. [2011a] learns the eviction behavior of the underlying
replacement policy', but the main insight behind SHiP is that reuse behavior is more
strongly correlated with the PC that inserted the line into the cache rather than with
the PC that last accessed the line. Thus, on a cache eviction, SHiP’s predictor is
trained with the PC that first inserted the line on a cache miss, and the predictor is
only consulted on cache misses (on hits, lines are promoted to the highest priority
without consulting the predictor).

Table 4.2: Signature Based Hit Prediction (SHiP)

Insertion Promotion Victim Selection
if (prediction) RRPV =2 | RRPV =0 Increment all RRPVs RRPV =3
else RRPV = 3 (if no line with RRPV = 3)

1A minor difference is that SDBP learns the LRU solution, whereas SHiP learns from SRRIP.

32 4. FINE-GRAINED REPLACEMENT POLICIES

More specifically, SHiP trains a predictor that learns whether a given signature
has near or distant re-reference intervals. A few sets are sampled in the cache to
maintain signatures and train the predictor. On a cache hit in a sampled set, the sig-
nature associated with the line is trained positively to indicate a near re-reference,
and on an eviction of a line that was never reused, the signature is trained negatively
to indicate a distant re-reference. When a new line is inserted, the signature of the
incoming line is used to consult the predictor and determine the re-reference inter-
val of the incoming line (prediction is performed for all accesses, not just the sampled
sets). Once inserted into the cache, lines are managed using a simple RRIP policy (see
Table 4.2).

The choice of signature is critical to SHiP’s effectiveness. Jaleel, et al., evaluate
a program counter signature (PC), a memory region signature, and an instruction
sequence history signature, and they find that the PC signature performs best.

SHiP builds on DRRIP Jaleel et al. [2010b] to create a Fine-Grained policy.
Whereas DRRIP makes uniform re-reference predictions for all cache lines in an
epoch, SHiP makes finer-grained predictions: It categorizes incoming lines into dif-
ferent groups by associating each reference with a unique signature. Cache lines with
the same signature are assumed to have similar re-reference behavior, but cache lines
with different signatures are allowed to have different re-reference behavior within
the same epoch.

We now answer the questions mentioned at the beginning of this sections. (1)
Initially, SHiP learns from SRRIP, but once SHiP’s predictor has been trained, further
training updates come from SHiP’s own reuse and eviction behavior. (2) SHiP uses a
PC-based predictor, where the PC associated with a line is the one that inserted the
line on a cache miss, where each PC is associated with a saturating counter. (3) SHiP
relies on the RRIP policy to age all lines.

4.2.3 HAWKEYE

To avoid the pathologies of heuristic-based solutions, such as LRU, Hawkeye Jain
and Lin [2016] builds off of Belady’s MIN solution Belady [1966]2, which is intriguing
for two reasons. First, Belady’s MIN is optimal for any sequence of references, so a
MIN-based solution is likely to work for any access pattern. Second, Belady’s MIN
algorithm is an impractical algorithm because it replaces the line that will be reused
furthest in the future; hence, it relies on knowledge of the future.

The key insight behind Hawkeye is that while it is impossible to look into the
future, it is possible to apply Belady’s MIN algorithm to the memory references of the
past. Moreover, if a program’s past behavior is a good predictor of its future behavior,

2Technically, the Hawkeye policy builds off of a new linear-time algorithm that produces the same result as
Belady’s MIN policy.

4.2. CLASSIFICATION-BASED POLICIES 33

then by learning the optimal solution for past, Hawkeye can train a predictor that
should perform well for future accesses.

To understand how much history is needed to simulate MIN for past events,
Jain and Lin study the performance of MIN by limiting its window into the future.
Figure 4.3 shows that while MIN needs a long window into the future (8x the size
of the cache for SPECint 2006), it does not need an unbounded window. Thus, to
apply MIN to past events, we would need a history of 8x the size of the cache.

70 1
60 - —Belady
50
40 -
30
20 -

10

Error compared to Infinite OPT (%)

0 -
1X 2X 4x 8X 16X
View of the Future (in terms of cache capacity)

Figure 4.3: Belady’s algorithm requires a long view of the future.

Since maintaining an 8 x history is infeasibly expensive, Hawkeye computes the
optimal solution for just a few sampled sets, and it introduces the OPTgen algorithm
that computes the same answer as Belady’s MIN policy for these sampled sets. OPT-
gen determines the lines that would have been cached if the MIN policy had been
used. The key insight behind OPTgen is that the optimal caching decision of a line can
be accurately determined when the line is next reused. Thus, on every reuse, OPT-
gen answers the following question: Would this line have been a cache hit or cache
miss with MIN? This insight enables OPTgen to be reproduce Belady’s solution in
O(n) complexity using a small amount of hardware budget and simple hardware op-
erations.

Figure 4.4 shows the overall design of the Hawkeye replacement policy. OPT-
gen trains the Hawkeye predictor, a PC-based predictor which learns whether lines
inserted by a PC tend to be cache-friendly or cache-averse. When OPTgen deter-
mines that a line would have been a hit with MIN, the PC corresponding to the line
is trained positively, otherwise it is trained negatively. The predictor is consulted for
every cache insertion and promotion® using the PC of the incoming line. Lines that

3This differs from other Classification-Based policies, where the predictor is only consulted on insertions.

34 4. FINE-GRAINED REPLACEMENT POLICIES

PC

Cache

Access o N Insertion

Stream ! OPTeen 3 Hawkeye Priority | Last Level
g i OPT Predictor Cache
N / hit/miss

omputes OPT’s Remembers past OPT
decisions for the past decisions

Figure 4.4: Overview of the Hawkeye Cache.

are predicted to be cache-friendly are inserted with high priority, and lines that are
predicted to be cache-averse are inserted with low priority (see Table 4.3).

Table 4.3: Hawkeye

Insertion Promotion Victim Selection
if (prediction) RRPV = 0 (same as Increment all RRPVs
else RRPV =7 insertion) | (if no line with RRPV = 7)

To answer the questions at the beginning of the section: (1) Hawkeye learns
from the optimal caching solution, instead of learning from LRU or SRRIP. (2) Hawk-
eye learns the optimal solution using a PC-based predictor, which is conceptually
similar to the predictors used in SDBP and SHiP. (3) Hawkeye also relies on RRIP’s
aging mechanism to age lines that are inserted with high priority. To correct for in-
accurate predictions, Hawkeye also trains the predictor negatively when a line that
was predicted to be cache-averse is evicted without being reused.

Hawkeye makes an interesting conceptual contribution: It phrases cache re-
placement as a supervised learning problem*, which is surprising because unlike
branch prediction, where the program execution eventually provides the correct
outcomes of each branch, hardware caches do not provide such labeled data. By
applying the optimal solution to past events, Hawkeye provides labeled data, which
suggests that the field of cache replacement might benefit from the vast research in
supervised learning.

4.2.4 PERCEPTRON-BASED PREDICTION

Predictive policies depend heavily on the accuracy of their predictors. SDBP, SHiP,
and Hawkeye all use PC-based predictors that achieve accuracies of around 70-80%.

4In machine learning, supervised learning is the task of learning a function from a set of labeled input-output
pairs.

4.2. CLASSIFICATION-BASED POLICIES 35

feature 1 @E index »(Table 1

@ | pc (e syl Taple o 2 —> prediction

hash 5! Table — prediction

[] © 76 |4l Table N

@ (b)

Figure 4.5: The perceptron predictor considers more features.

Jimenez and Teran aim to improve predictor accuracy by using better features and
better prediction models Jiménez and Teran [2017], Teran et al. [2016]. For example,
the Perceptron Predictor Teran et al. [2016] uses simple artificial neurons® Rosen-
blatt [1962] to augment the PC with richer features, such as (1) the history of PCs,
(2) bits from the memory address, (3) a compressed representation of the data, and
(4) the number of times a block has been accessed. Each feature is used to index a
distinct table of saturating counters, which are then summed and compared against
a threshold to generate a binary prediction. A small fraction of accesses are sampled
to updated the perceptron predictor using the perceptron update rule: If the predic-
tion is incorrect, or if the sum fails to exceed some magnitude, then the counters are
decremented on an access and incremented on an eviction. Figure 4.5 contrasts the
perceptron predictor (right) with prior PC-based predictors (left).

The Multiperspective Reuse Predictor Jiménez and Teran [2017] explores an
extensive set of features that captures various properties of the program, producing
a predictor that is informed from multiple perspectives. The features are parameter-
ized with richer information about the LRU stack position of each training input, the
bits of the PC with which each feature is hashed, and the length of the PC history. To-
gether, these parameters create a large feature space that leads to higher prediction
accuracy.

4.2.5 EVICTED ADDRESS FILTER (EAF)

The EAF policy Seshadri et al. [2012] predicts the reuse behavior of each missed
block individually, allowing for finer-grained differentiation than PCs. The key ob-

5Perceptrons are the building blocks of neural networks

36 4. FINE-GRAINED REPLACEMENT POLICIES

servation is that if a block with high reuse is prematurely evicted from the cache,
then it will be accessed soon after eviction, while a block with low reuse will not
be accessed for a long time after eviction. Therefore, the EAF policy uses a bloom
filter Bloom [1970] (a probabilistic, space-efficient structure to determine the pres-
ence or absence of an element in a set) to track a small set of recently evicted ad-
dresses. On a cache miss, if the new line is present in the bloom filter—which is also
called the Evicted Address Filter—then the line is predicted to be reuse-friendly and
is inserted with high priority; otherwise, the new line is inserted according to the
Bimodal Insertion policy (see Section 3.1.2). When the bloom filter is full, it is reset.
The Evicted Address Filter is conceptually similar to a small victim cache that tracks
lines that have been recently evicted from the main cache. Table 4.4 summarizes the
operations of the EAF policy.

Table 4.4: The Evicted Address Filter Policy (EAF)

Insertion Promotion Aging Victim Selection
MRU position (if in EAF), | MRU position | Increment by 1 LRU position
BIP (otherwise)

Conceptually, the EAF policy extends the lifetime of cache lines beyond evic-
tion, so that the lifetime of a line starts with its insertion, but it ends when the line
is removed from the bloom filter. With an extended lifetime, it becomes feasible for
EAF to observe reuse for lines with long reuse intervals, which leads to better scan-
resistance and better thrash-resistance, and thus better performance.

The Reuse Detector (ReD) crc [2017], Albericio et al. [2013] proposes similar
ideas as it bypasses any line that does not hit in the LLC or an Address Reuse Table,
which tracks recent cache misses. As a result, ReD only inserts lines in the cache on
their second reuse. To avoid bypassing all lines when they are first seen, ReD also
uses a PC-based predictor to predict lines that are likely to be reused after their first
access.

4.3 OTHER PREDICTION METRICS

Not all Fine-Grained policies predict reuse distances or binary labels, and it is cer-
tainly possible to capture past behavior using different prediction targets. For exam-
ple, one component of Kharbutli et.’s dead block predictor Kharbutli and Solihin
[2005] predicts the maximum number of times that a line is expected to be reused in
the cache. As an example of this class of solutions, we now discuss in detail the EVA
policy Beckmann and Sanchez [2017], which introduces a novel prediction target,

4.3. OTHER PREDICTION METRICS 37

called the EVA, and which is one of the few Fine-Grained solutions to use historical
information to guide the aging process.

4.3.1 ECONOMIC VALUE ADDED (EVA)

Beckmann et al., argue that it is optimal to replace the candidate with the longest ex-
pected time to reuse only when we possess perfect knowledge of the future Belady
[1966], but this strategy is inadequate for practical solutions which face inherent un-
certainty about the future Beckmann and Sanchez [2017]. Thus, practical solutions
need to balance two competing objectives: (1) maximize the probability that a given
line will hit in the cache, and (2) limit the duration for which the line consumes cache
space. Solutions that are based solely on reuse distance account for only one side of
the tradeoff.

To address this limitation, Beckmann et al., propose a new metric called the
economic value added (EVA), which combines these two factors into a single metric.
EVA is defined to be the number of hits the candidate is likely to yield compared to its
average occupancy in the cache Beckmann and Sanchez [2017]. Equation 4.1 shows
EVA is computed for a given line. We see that there are two components to a line’s
EVA. First, the line is rewarded for its expected number of future hits (a line that has
a higher reuse probability will have a higher EVA value). Second, the line is penalized
for the cache space that it will consume. This penalty is computed by ckarging each
candidate for the time it will spend in the cache at the rate of a single line’s average hit
rate (the cache’s hit rate divided by its size), which is the long-term opportunity cost
of consuming cache space. Thus, the EVA metric captures the cost-benefit tradeoff
of caching a line by computing whether its odds of hitting are worth the cache space
that it will consume.

EV A = Expected_hits — (Cache_hit_rate/Cache_size) x Expected_time (4.1)

=
&
il

e
=

e <
o
S

1 S}nallérréy o o Bigarray y

Access Probability
s o
o

st
e

-10 7 rrrrrrr Evict after small array ;.
i 7~ :

=4
>

| i i i i i i i i
0 50 100 150 200 250 0 50 100 150 200 250
Age I _ _. Reuse Distance

Figure 4.6: EVA learns about the candidates as they age.

38 4. FINE-GRAINED REPLACEMENT POLICIES

The EVA of candidates is inferred from their ages, and it is revised as the can-
didates age. For example, the left side of Figure 4.6 shows how the EVA changes
with respect to a candidate’s age for an application that iterates over a small and a
big array (the reuse distance distribution for the same application is shown on the
right side). At first, the EVA is high because there is a good chance that the access
is from a small array, which means that the replacement policy can afford to gamble
that candidates will hit quickly. But the EVA drops sharply when the age exceeds the
length of the short array because the penalty of caching lines from the big array is
much higher. At this point, the low EVA makes it very likely that lines from the big
array are evicted. The penalty of caching lines from the big array decreases as the
lines age and approach the reuse distance of the big array. This penalty is reflected
in the gradual increase in the EVA from age 50 to age 250, at which point the EVA
replacement policy protects lines from the big array even though they are old. Thus,
in the face of uncertainty, the EVA replacement policy learns more about candidates
as they age.

00

f | :
§ _o5c Buict. G L R
w i immedigtely

—1.5 [S A 300000 m
I 1 1 1
0 50 100 150 200 250

Age

Figure 4.7: EVA with classification.

Of course, another way to reduce uncertainty is to classify lines into different
categories. For example, Figure 4.7 shows the EVA with respect to age if we were to
classify the small array and big array into distinct classes, and we see that the per-class
EVA curves are much simpler. Theoretically, EVA can be extended to support classi-
fication, but the implementation complexity limits this extension to a few classes. In
the next section, we will discuss replacement policies that rely on many fine-grained
classes but learn much simpler metrics for each class. By contrast, EVA ranks ages at
a fine granularity, but this restricts EVA to use fewer classes.

The EVA replacement policy computes the EVA curves by recording the age
distribution of hits and evictions and by processing information about these evictions
using a lightweight software runtime. To predict the EVA of a line, its age is used to
index into an eviction priority array, which conceptually represents the EVA curves.

39

CHAPTER 5

Richer Considerations

We have until now focused narrowly on the problem of cache replacement, both
in terms of metrics—in which we have focused on cache misses—and in terms of
context—in which we have focused on the cache as an isolated abstract entity. But
of course, cache misses do not translate directly to performance loss, and cache re-
placement policies do not operate in isolation. This chapter broadens our discussion
in both dimensions, first exploring replacement policies that consider the variable
cost of cache misses and then exploring policies that consider the impact of prefetch-
ers, the impact of the cache architecture, and finally the impact of new memory tech-
nologies.*

5.1 COST-AWARE CACHE REPLACEMENT

Most replacement policies seek to minimize overall cache miss rate, assuming that
all cache misses are equally costly. In reality, different cache misses can have widely
different impact on overall performance. For example, misses that are isolated (low
memory-level parallelism) tend to be more expensive than misses that are clustered
(high memory-level parallelism), because with greater parallelism, there is more abil-
ity to hide the latency of a single cache miss. As another example, misses that are on
the program’s critical path are more important to program performance than those
that are not. A smart replacement policy that considers these costs can preferentially
cache high-cost misses (at the cost of a lower hit rate) to achieve better program
performance.

The optimal cost-aware replacement policy (CSOPT) Jeong and Dubois [2006]
minimizes the overall cost of all misses, rather than minimizing the number of misses.
The basic idea is to follow Belady’s MIN policy except when MIN would evict a block
whose miss cost is greater than those of other blocks in the cache. On encountering
such a block, CSOPT explores multiple sequences of replacement decisions until it
can decide on the replacement sequence that minimizes total cost. A naive realiza-
tion of CSOPT expands all possible replacement sequences in the form of a search
tree (see Figure 5.1); the depth of the search tree is equal to the number of cache
accesses, because a new level is added for every new cache access, and the width is
equal to the cache size s, because the search considers up to s replacement choices
on every cache eviction.

40 5. RICHER CONSIDERATIONS

Search Tree Trace

X1

X2

Figure 5.1: CSOPT uses a search tree.

Note that a search tree is required because greedily caching a high-cost block
at any node in the tree might not translate to the best replacement sequence in the
long run. In particular, greedily caching a high-cost block might preclude the caching
of another block that has an even higher cost, or it might displace several low-cost
blocks that together are more costly than the single high-cost block. Thus, the best
replacement decision depends on the behavior of multiple competing lines in the
future, resulting in a large search space of solutions.

Unfortunately, CSOPT’s branch-and-bound approach is exponential in the
number of cache accesses, whereas MIN is linear in the number of cache accesses.
Jeong and Dubois propose heuristics Jeong and Dubois [2006] to prune the search
tree and to reduce the search space. For a few scientific workloads, these heuristics
are shown to make the computation of CSOPT tractable—in the sense that an offline
analysis can complete—but in general, they do not reduce the worst-case complex-
ity.

Figure 5.2 shows the relative cost savings of CSOPT over MIN (y-axis) for the
Barnes Hut benchmark from the SPLASH benchmark suite Jeong and Dubois [2006].
Here cache misses are assumed to have just two possible costs, either high cost or low
cost. The x-axis represents different proportions of high-cost accesses, and the lines
represent different cost ratios between high-cost and low-cost accesses. We see that
the cost savings of CSOPT over MIN increases with higher cost ratios, and they are
most pronounced when the high-cost accesses comprise 20-30% of the total number
of accesses. This trend makes sense because the benefit of CSOPT over MIN grows
when the difference is cost is high and when the percentage of low-cost misses is
high, because in these cases, MIN is more likely to make the wrong choice.

Of course, like MIN, CSOPT is impractical since it requires knowledge of fu-
ture accesses. Therefore, practical solutions for cost-aware cache replacement rely

5.1. COST-AWARE CACHE REPLACEMENT 41

g

Bérnes

@
=

@
=]

@ =
S o

o

=]
=~
n

£

B
=]
-
I
N

relative cost savings (%)

01 02 03 04 05 08 07 08 O
high-cost access fraction

9

Figure 5.2: Cost savings over MIN with random cost assignments Jeong and Dubois
[2006].

on intuitive heuristics to (1) identify high-cost cache accesses and (2) preferentially
cache high-cost loads over low-cost loads.

5.1.1 MEMORY LEVEL PARALLELISM (MLP)

Qureshi et al., were the first to propose an MLP-aware cache replacement pol-
icy Qureshi et al. [2006]. Their key insight is that isolated misses (low MLP) are more
costly for performance than parallel misses (high MLP) because an isolated miss im-
pedes all dependent instructions behind it and leads to a long-latency processor stall.
By contrast, parallel misses are not as expensive because the processor can hide their
latency by issuing multiple loads in parallel. Thus, an MLP-aware cache replacement
policy can improve performance by reducing the number of performance-critical
isolated misses.

Qureshi et al., illustrate this phenomenon with an example (see Figure 5.3),
where P1, P2, P3 and P4 can be serviced in parallel, and where S1, S2 and S3 are
isolated misses. The top part of Figure 5.3 shows that Belady’s solution results in only
4 misses, but it also results in 4 stalls because the S1, S2 and S3 all miss and cause the
processor to stall. By contrast, the MLP-aware policy in the bottom part of the figure
never evicts S1, S2 and S3, so even though this policy results in 6 misses, it stalls the
processor only twice, resulting in overall better performance.

MLP-Aware Linear Replacement Policy There are two components to Qureshi
et al.’s MLP-aware Linear (LIN) policy. The first is an algorithm that predicts the
MLP-cost of a future miss. The second is a replacement policy that takes into account
both recency and MLP-based cost.

42 5. RICHER CONSIDERATIONS

B c D E
A P1P2 P3P4 P4 P3 P2P1 81+ (s2+ .—JA'

(a) An access pattern. A miss to an S block (S1,52,53) results in an Isolated miss. A miss
to a P block (P1,P2,P3,P4) can be serviced in parallel with misses to other P blocks.

Hit:P1,P2,P3 it: . " ss:
Hit/Miss | hlﬂlss:PAl Hit: P4,P3,P2,P1 Miss: S$1 Miss: S2 Miss: 83

[t A 8 l c p) E A, [Missesiteration: 4
g:::e [P1]p2[Pa[ss] |F1IF;“’3|P4‘ [P1]P2]Pa]s1] [P1[P2]Pa]sz] [P1[p2[Pa[ss]

(b) Execution timeline for one iteration with Belady’s OPT replacement

Hit: P1 Hit: P4 " " .
Hit/Miss Miss: P2,P3,P4 Miss: P3,P2,P1 Hit: $1 Hit: $2 Hit: 83

time ;;_- B b c l D, E l A, Cycles Saved _
- 1 - -~ —A— e SEEEER
Cach S o

s | [s1s2[s3[P1] [s1]s2[sa[e4] [s1[sz[sa[e1]

(c) Execution timeline for one iteration with MLP-aware replacement

Figure 5.3: MLP-Aware Caching can outperform OPT.

The MLP-based cost of a cache miss is defined to be the number of cycles that
the miss spends waiting to be serviced, which can be easily tracked using Miss Status
Handling Registers. For parallel misses, the cycle count is divided equally among all
concurrent misses. Thus, a higher MLP-based cost implies that the line is likely to
result in an isolated miss, so it is more desirable to keep it in the cache. Furthermore,
Qureshi et al., note that the MLP-based cost repeats for consecutive misses, so the
last MLP-based cost of a miss is a good indicator of its MLP-based cost for future
misses.

The LIN replacement policy linearly combines recency and MLP-based cost
and evicts the line with the lowest aggregate cost. In particular, if R(i) is the recency
value of a block i (the highest value denotes the MRU position and lowest value de-
notes the LRU position), and cost, (i) is its quantized MLP-based cost, then the LIN
policy will evict the line with the lowest value of R(i) + X * cost,(i), where X is the
importance of the cost, in choosing the victim. A high value of X indicates that LIN
is likely to retain recent blocks with a high MLP-based cost, and a low value of A
indicates that LIN is likely to put more emphasis on recency. Qureshi et al., set X to
4.

Finally, because LIN does not always outperform LRU, Qureshi et al., dynami-
cally choose between LRU and LIN by using Set Dueling (see Section 3.3.2) to period-
ically choose between the LIN and LRU policies. Kumar et al., provide an alternate
solution by incorporating post-eviction reuse information into the cost-metric it-
self Arunkumar and Wu [2014]. In particular, their ReMAP policy defines the overall
cost of a line as a linear combination of recency, DRAM latency, and post-eviction
reuse distance, where the post-eviction reuse distance is computed using a bloom
filter for evicted lines.

5.2. CRITICALITY-DRIVEN CACHE OPTIMIZATIONS 43

Locality-Aware Cost-Sensitive Cache Replacement Policy Recent work
builds on Qureshi et al.’s work by (1) defining new cost metrics, and (2) defining
new replacement strategies. For example, the Locality-Aware Cost-Sensitive Cache
Replacement Algorithm (LACS) Kharbutli and Sheikh [2014] estimates the cost of a
cache block by counting the number of instructions issued during a block’s LLC miss.
Intuitively, this definition of cost reflects the processor’s ability to hide miss penalty,
which is similar to MLP. Cache blocks are classified as either low-cost or high-cost,
depending on whether the number of issued instructions is above or below a thresh-
old. For each block, LACS maintains a 2-bit cost value, so that they can represent
both high and low cost with two levels of confidence. Thus, instead of defining a
numeric cost value, LACS uses a binary cost classification.

For its replacement policy, LACS attempts to reserve high-cost blocks in the
cache, but only while their locality is still high (i.e. they have been accessed recently).
In particular, on a cache miss, LACS chooses a low-cost block to evict, so that high-
cost blocks remain in the cache. However, high-cost blocks are aged by decrement-
ing their 2-bit cost value so that they relinquish the reservation if they’ve been in the
cache for too long. Similarly, low-cost blocks are promoted by incrementing their
2-bit cost value so that they are retained in the cache if they show high temporal
locality. Thus, LACS combines the benefits of both locality and cost-based replace-
ment.

5.2 CRITICALITY-DRIVEN CACHE OPTIMIZATIONS

Criticality is a more general cost function than MLP: Srinivasan et al., define a crit-
ical load as any load that needs to complete early to prevent processor stalls, while
a non-critical load is one that can tolerate long latency Srinivasan et al. [2001]. Crit-
ical loads are identified using a variety of techniques Fields et al. [2001], Srinivasan
and Lebeck [1998], and criticality-driven cache optimizations prioritize critical loads
over non-critical loads. To highlight important advances in this area, we now discuss
two criticality-driven optimizations.

5.2.1 CRITICAL CACHE

Using detailed limit studies, Srinivasan et al., determine that load criticality can be
determined by the characteristics of the chain of instructions dependent on the
load Srinivasan and Lebeck [1998]. In particular, a load is classified as critical if it
satisfies any of the following criteria: (1) The load feeds into a mispredicted branch,
(2) the load feeds into another load that incurs an L1 cache miss, or (3) the num-
ber of independent instructions issued in an N cycle window following the load is
below some threshold. Thus, this definition of criticality considers both the type of

44 5. RICHER CONSIDERATIONS

dependent instructions (e.g., mispredicted branch, L.1 misses) and the number of in-
structions in its dependence chain.

To illustrate the importance of optimizing for critical loads, Srinivasan et al.,
show that if all critical loads could be satisfied by the L.1 cache, the result would be an
average 40% improvement over a traditional memory hierarchy, whereas if an equal
percentage of loads is randomly chosen to hit in the L1, the average improvement
would be only 12%. Therefore, it may be possible to improve overall performance
by decreasing the latency of these critical loads at the expense of increased latency
for non-critical loads.

To optimize critical loads, Srinivasan et al., use a critical cache, which serves as
a victim cache for blocks that were touched by a critical load. For a fair comparison,
the baseline also includes a victim cache, called the locality cache, which caches both
critical and non-critical victims. Unfortunately, they find that the critical cache does
not produce any gains over the locality cache because (1) the working set of critical
loads is so large that the critical cache is unable to significantly reduce the critical
load miss ratio, (2) the locality cache is able to provide competitive critical load miss
ratios as a critical cache because of spatial locality between non-critical and critical
loads, and (3) the critical cache’s benefits are diminished by its overall higher miss
rate. The overall result is that managing cache content based on locality outperforms
criticality-based techniques.

Srinivasan et al., conclude that it is very difficult to build memory hierarchies
that violate locality to exploit criticality because there is a tension between increase
in non-critical miss ratio and a decrease in critical miss ratio. However, they suggest
that there is room for criticality-based techniques to supplement locality instead of
replacing locality.

5.2.2 CRITICALITY-AWARE MULTI-LEVEL CACHE HIERARCHY

Nori et al., propose a Criticality Aware Tiered Cache Hierarchy (CATCH) Nori et al.
[2018] that accurately detects program criticality in hardware and uses a novel set of
inter-cache prefetchers to ensure that critical loads are served at the latency of the
L1 cache.

Nori et al., use a definition of criticality based on the program’s data depen-
dence graph (DDG), which was first introduced by Fields et al. in 2001 Fields et al.
[2001]. The key idea is to analyze the program’s DDG to find the critical path, which
is the path with the maximum weighted length, where weights are based on the la-
tency of operations. All load instructions on the critical path are deemed critical.
Figure 5.4 shows an example of a DDG, where each instruction in the DDG has three
nodes: The D node denotes allocation into the core, the E node denotes the dispatch
of the instruction to the execution nodes, and the C node denotes instruction com-

5.3. MULTI-CORE-AWARE CACHE MANAGEMENT 45

1 2 Load 3 load 4 5 load 6 Load 7

Figure 5.4: Critical path in a program’s Data Dependence Graph (DDG) Fields et al.
[2001].

mit. An E-E edge denotes a data dependence, C-C edges denote in-order commit,
and D-D nodes denote inorder allocation into the core. The critical path in the graph
is marked with dotted lines, and instructions 1, 2, 4, and 5 are found to be critical.
Nori et al. propose a novel and fast incremental method to learn the critical path us-
ing an optimized representation of the data dependence graph in hardware, which
takes just 3 KB of area. This method is used to enumerate a small set of critical load
instructions (critical PCs).

To optimize critical loads, critical loads are prefetched from the L2 or the LLC
into the L1 cache with the help of Timeliness Aware and Criticality Triggered (TACT)
prefetchers. TACT utilizes the association between the address or data of load in-
structions in the vicinity of the target critical load to trigger the prefetches into L1.
The implication of TACT prefetchers is that critical loads in the LLC can be served
at the latency of the L1 cache, and the L2 cache is no longer necessary and can be
eliminated altogether.

5.3 MULTI-CORE-AWARE CACHE MANAGEMENT

In multi-core systems, accesses from multiple cores compete for shared cache ca-
pacity. Poor management of the shared cache can degrade system performance and
result in unfair allocation of resources because one ill-behaved application can de-
grade the performance of all other applications sharing the cache. For example, a
workload with streaming memory accesses can evict useful data belonging to other
recency-friendly applications.

There are two broad approaches for handling shared cache interference. The
first approach partitions the cache among cores to avoid interference and to provide
fairness guarantees. The second approach modifies the replacement policy to avoid
pathological behavior. We now discuss both these approaches in more detail.

46 5. RICHER CONSIDERATIONS
5.3.1 CACHE PARTITIONING

Partitioning avoids performance pathologies in shared caches and can provide strong
isolation and fairness guarantees. Cache partitioning schemes have two main consid-
erations: (1) How are partition sizes enforced in the cache? (2) How are partition sizes
determined?

The most common mechanism to enforce cache partitions is to allocate dedi-
cated ways to each application, such that any given application can only insert and
evict from ways that are currently allocated to its partition. More advanced schemes
avoid rigid partitions and instead modify the replacement policy to ensure that par-
titions are enforced in the average case Sanchez and Kozyrakis [2011], Xie and Loh
[2009].

Partition sizes can be determined by either the user, the OS or the hardware.
We now discuss two hardware-based schemes to determine partition sizes for shared
last-level caches.

Utility-Based Cache Partitioning (UCP) UCP is built on the insight that LRU does
not work well for shared caches because it tends to allocate the most cache capacity
to the application that issues the most memory requests rather than to the applica-
tion that benefits the most from the cache Qureshi and Patt [2006]. To address this
issue, Qureshi et al., dynamically partition the cache among cores, and they propose
a lightweight runtime mechanism to estimate the partition size for each core. The
key idea behind the partitioning scheme is to allocate a larger cache partition to the
application that is more likely to see an improved hit rate with the extra cache space.
For example, in Figure 5.5, LRU gives equake 7 cache ways even though it does not
see any hit rate improvement beyond 3 ways.

To find the hit rate curve for each competing application, UCP leverages the
stack property of the LRU policy, which says that an access that hits in a LRU man-
aged cache containing n ways is guaranteed to also hit if the cache had more than n
ways (assuming that the number of sets remains constant). In particular, UCP deploys
sampled auxiliary tag directories, called Utility Monitors or UMONS, to monitor the
reuse behavior for each application, assuming that it had the entire cache to itself;
for each application, it counts the number of cache hits at each recency position.
The number of hits at each recency position determines the marginal utility of giving
the application one extra way. For example, if for a cache with 2 ways, 25 of 100
accesses miss the cache, 70 hit in the MRU position, and only 5 hit in the LRU po-
sition, then reducing the cache size from two ways to one way will increase the miss
count from 25 to 30. However, reducing the cache size from one way to zero ways
will dramatically increase the miss count from 30 to 100.

5.3. MULTI-CORE-AWARE CACHE MANAGEMENT 47

wn

LY ——equake| |
N\ ——vpr | |

Revesesss <S50

a

Misses Per 1000 Instructions (MPKI)
w

\'
0073 4 6 8 To12 14 16

Figure 5.5: UCP allocates partition sizes based on utility.

UCP’s partitioning algorithm uses the information collected by the UMONs to
determine the number of ways to allocate to each core, and it uses way partitioning
to enforce these partitions.

ASM-Cache Since hit rates do not correspond directly to improved performance,
ASM-Cache partitions shared caches with the goal of minimizing application slow-
down Subramanian et al. [2015]. The key idea is to allocate more cache ways to
applications whose slowdowns reduce the most from additional cache space.

An application’s slowdown is defined to be the ratio of its execution time when
it is run with other applications (shared execution time) and its execution time had
it been run alone on the same system (alone execution time). Since the shared exe-
cution time can be measured by sampling the current execution, the key challenge
for ASM-Cache is to estimate the application’s alone execution time without actually
running it alone.

To estimate the application’s alone time, ASM-Cache leverages the insight that
the performance of a memory-bound application is strongly correlated with the rate
at which its shared cache accesses are serviced. Therefore, ASM-cache estimates
the shared cache service rate by (1) minimizing interference at the main memory to
estimate average miss service time in the absence of interference and (2) measur-
ing the number of shared cache misses in the absence of interference. The former
is accomplished by temporarily giving the application high priority at the memory
controller, and the latter is accomplished by using sampled auxiliary tags that only
service one application. The aggregate miss count in the sampled tags is used along

48 5. RICHER CONSIDERATIONS

with the average miss service time to estimate the time it would have taken to serve
the application’s requests had it been run alone.

Using this scheme, ASM-Cache is able to estimate the slowdown of each appli-
cation with different number of cache ways. The actual number of ways allocated to
each application uses a scheme similar to UCP.

5.3.2 SHARED-CACHE-AWARE CACHE REPLACEMENT

Replacement policies discussed in Chapter 3 and Chapter 4 can be directly applied
to shared caches. In general, early Coarse-Grained policies, such as LRU, that were
susceptible to thrashing perform poorly in the shared cache setting, but more recent
Fine-Grained policies tend to scale well without significant changes. The success
of Fine-Grained replacement policies on shared caches can perhaps be explained
by their ability to distinguish access patterns for small groups of lines, which allows
them to naturally distinguish the behavior of different applications.

We now discuss two replacement schemes that were proposed to allow Coarse-
Grained policies to better adapt to shared caches, and we also discuss a domain-
specific replacement policy for task-flow programs.

Thread-Aware DIP The Dynamic Insertion Policy (DIP) Qureshi et al. [2007] dis-
cussed in Section 3.3 uses Set Dueling to modulate between the recency-friendly
LRU policy and the thrash-resistant BIP policy. However, DIP leaves room for im-
provement in shared caches as it does not distinguish between the caching behavior
of individual applications. So if DIP chooses LRU, all applications sharing the cache
will use the LRU policy, which is not desirable when some applications benefit from
the cache and others don’t.

Jaleel et al., propose thread-aware extensions to DIP that are designed to work
well for shared caches Jaleel et al. [2008]. The key idea is to make a choice for
each application individually. However, this idea is complicated by the fact that for
n applications sharing the cache, sampling the behavior of 2" combinations is pro-
hibitively expensive. To mitigate this overhead, they propose two approaches. The
first approach, called TADIP-Isolated (TADIP-I), learns the insertion policy for each
application independently, assuming that all other applications use the LRU policy.
The second approach, called TADIP-Feedback (TADIP-F), accounts for interaction
among applications by learning the insertion policy for each application, assuming
that all other applications use the insertion policy that currently performs the best
for that application.

Promotion/Insertion Pseudo-Partitioning Of Multi-Core Shared Caches
(PIPP) Xie etal., build on Utility-Based Cache Partitioning Qureshi and Patt [2006],
but instead of strictly enforcing UCP partitions, they design insertion and promotion

5.4. PREFETCH-AWARE CACHE REPLACEMENT 49

policies that enforce the partitions loosely Xie and Loh [2009]. The main insight be-
hind their PIPP policy is that strict partitions result in under-utilization of cache re-
sources because a core might not use its entire partition. For example, if the cache is
way-partitioned, and if core_i does not access a given set, the ways allocated to core_i
in that set will go to waste. PIPP allows other applications to steal these unused ways.

In particular, PIPP inserts each line with a priority that is determined by its
partition allocation. Lines from cores that have been allocated large partitions are
inserted with high priority (proportional to the size of the partition), and lines from
cores that have been allocated small partitions are inserted with low priority. On a
cache hit, PIPP’s promotion policy promotes the line by a single priority position
with a probability of p_prom, and the priority is unchanged with a probability of 1 —
p_prom. On eviction, the line with the lowest priority is evicted.

RADAR Our discussion so far has focused on multiple programs sharing the last-
level cache. Manivannan et al., instead look at the problem of last-level cache re-
placement for task-parallel programs running on a multi-core system. Their policy,
called RADAR, combines static and dynamic program information to predict dead
blocks for task-parallel programs Manivannan et al. [2016]. In particular, RADAR
builds on task-flow programming models, such as OpenMP, where programmer an-
notations explicitly specify (1) dependences between tasks, and (2) address regions
that will be accessed by each task. The runtime system uses this information in con-
junction with dynamic program behavior to predict regions that are likely to be dead.
Blocks that belong to dead regions are demoted and preferentially evicted from the
cache.

More concretely, RADAR has three variants that combine information from the
programming model and the architecture in different ways. First, the Look-ahead
scheme uses the task data-flow graph to peek into the window of tasks that are going
to be executed soon, and it uses this information to identify regions that are likely to
be accessed in the future and regions that are likely to be dead. Second, the Look-
back scheme tracks per-region access history to predict when the next region access
is likely to occur. Finally, the combined scheme exploits knowledge of future region
accesses and past region accesses to make more accurate predictions.

5.4 PREFETCH-AWARE CACHE REPLACEMENT

In addition to caches, modern processors use prefetchers to hide the long latency
of accessing DRAM, and it is essential that these mechanisms work well together.
Prefetched data typically forms a significant portion of the cache, so, interaction with
the prefetcher is an important consideration for cache replacement policies.

50 5. RICHER CONSIDERATIONS

There are two primary goals in designing a prefetch-aware cache replacement
policy. First, the replacement policy should avoid cacke pollution caused by inaccu-
rate prefetches. Second, the replacement policy should preferentially discard lines
that can be prefetched over those that are difficult to prefetch Jain and Lin [2018],
Wu et al. [2011Db].

In this section, we first summarize the vast majority of work in cache replace-
ment which focuses on the first design goal of eliminating useless prefetches. We
then show that Belady’s MIN algorithm, which is provably optimal in the absence of
prefetches, is incomplete in the presence of a prefetcher because it ignores the sec-
ond design goal of deprioritizing prefetchable lines. Finally, we summarize recent
work that addresses these limitations of MIN by simultaneously considering both of
the above design goals.

5.4.1 CACHE POLLUTION

Most prefetch-aware cache replacement policies focus on reducing cache pollution
by identifying and evicting inaccurate prefetches. Such solutions can be divided into
two broad categories.

The first category takes feedback from the prefetcher to identify potentially
inaccurate prefetch requests; such policies typically require explicitly co-designed
prefetchers or modifications to existing prefetchers. For example, Ishii et al., use the
internal state of the AMPM Ishii et al. [2011] prefetcher to inform the insertion prior-
ity of prefetched blocks Ishii et al. [2012]. As another example, KPC Kim et al. [2017]
is a cooperative prefetching and caching scheme that co-designs the prefetcher to
provide feedback on confidence and estimated time to reuse. This information is
then used to determine whether the prefetch is inserted into the L2 or the L3, and
this information is used to determine the inserted line’s RRPV insertion position.

The second category works independently of the prefetcher and monitors
cache behavior to adapt replacement decisions; such policies can work with any
prefetcher but may lack precise prefetcher-specific information. For example,
FDP Srinath et al. [2007] and ICP Seshadri et al. [2015] introduce methods to dynam-
ically estimate prefetch accuracy, and they insert inaccurate prefetches at positions
with low priority. In particular, FDP estimates accuracy at a coarse granularity by
counting the ratio of useful prefetches and total prefetches within a time epoch. ICP
augments FDP by accounting for recently evicted prefetched blocks that would have
been deemed accurate if they had been cached for some additional amount of time.
PACMan Wu et al. [2011b] instead identifies for each time epoch the best insertion
and promotion policies for prefetch requests. As shown in Figure 5.6, PACMan de-
fines three variants of RRIP (PACMan-M, PACMan-H and PACMan-HM), and it uses
set dueling to find the best insertion policy for a given epoch.

5.4. PREFETCH-AWARE CACHE REPLACEMENT 51

Baseline DRRIP PACMan-M on DRRIP PACMan-H on DRRIP PACMan-HM on DRRIP
SRRIP All Demand Prefetch Demand Prefetch Demand Prefetch
Insertion 2 2 3 2 2 2 3
Re-Reference 0 0 0 0 No Update 0 No Update
BRRIP All Demand Prefetch Demand Prefetch Demand Prefetch
Insertion Mostly 3 Mostly 3 Mostly 3 Mostly 3 Mostly 3 Mostly 3 Mostly 3
Re-Reference 0 0 0 4] No Update 0 No Update

Figure 5.6: PACMan’s RRIP policies.

Upon closer inspection of PACMan’s three constituent policies, we see that
while PACMan-M focuses on avoiding cache pollution by inserting prefetches in
the LRU position, and PACMan-H deprioritizes prefetchable lines by not promoting
prefetch requests on cache hits. Thus, PACMan-H is the first instance of a replace-
ment policy that attempts to retain hard-to-prefetch lines (our second goal), but as we
show in the next section, a much richer space of solutions exist when distinguishing
between prefetchable and hard-to-prefetch lines.

5.4.2 DEPRIORITIZING PREFETCHABLE LINES

Belady’s MIN is incomplete in the presence of prefetches because it does not distin-
guish between prefetchable and hard-to-prefetch lines!. In particular, MIN is equally
inclined to cache lines whose next reuse is due to a prefetch request (prefetchable
lines) and lines whose next reuse is due to a demand request (hard-to-prefetch lines).
For example, in Figure 5.7, MIN might cache X at both t = 0 and ¢ = 1, even though
the demand request at ¢ = 2 can be serviced by only caching X at ¢ = 1. As a result,
MIN minimizes the total number of cache misses, including those for prefetched lines
(such as the request to X at ¢ = 1), but it does not minimize the number of demand
misses Jain and Lin [2018].

Demand-MIN To address this limitation, Jain and Lin propose a variant of Be-
lady’s MIN, called Demand-MIN, that minimizes demand misses in the presence of
prefetches. Unlike MIN, which evicts the line that is reused furthest in the future,
Demand-MIN evicts the line that is prefetched furthest in the future. More precisely,
Demand-MIN states:

FEvict the line that will be prefetched firthest in the fiiture, and if no such line
exists, evict the line that will see a demand request firrthest in the fiture.

Thus, by preferentially evicting lines that can be prefetched in the future,
Demand-MIN accommodates lines that cannot be prefetched. For example, in Fig-
ure 5.7, Demand-MIN recognizes that because line X will be prefetched at time ¢ = 1,

IMIN correctly handles cache pollution, as inaccurate prefetches are always reused furthest in the future.

52 5. RICHER CONSIDERATIONS

Opportunity
e - [)
Load X Prefetch X Load X
t=0 t=1 t=2

A 4

Time

Figure 5.7: Opportunity to improve upon MIN.

line X can be evicted at ¢t = 0, thereby freeing up cache space in the time interval
between t = 0 and ¢ = 1, which can be utilized to cache other demand loads. The re-
duction in demand miss rate can be significant: On a mix of SPEC 2006 benchmarks
running on 4 cores, LRU yields an average MPKI of 29.8, MIN an average of 21.7,
and Demand-MIN an average of 16.9.

Unfortunately, Demand-MIN’s increase in demand hit rate comes at the ex-
pense of a larger number of prefeich misses?, which results in extra prefetch traf-
fic. Thus, MIN and Demand-MIN define the extreme points of a design space, with
MIN minimizing overall traffic on one extreme and Demand-MIN minimizing de-
mand misses on the other.

Design Space Figure 5.8 shows the tradeoff between demand hit rate (x-axis) and
overall traffic (y-axis) for several SPEC benchmarks Jain and Lin [2018]. We see that
different benchmarks will prefer different points in this design space. Benchmarks
such as astar (blue) and sphinx (orange) have lines that are close to horizontal, so
they can enjoy the increase in demand hit rate that Demand-MIN provides while
incurring little increase in memory traffic. By contrast, benchmarks such as tonto
(light blue) and calculix (purple) have vertical lines, so Demand-MIN increases traffic
but provides no improvement in demand hit rate. Finally, the remaining benchmarks
(bwaves and cactus) present less obvious tradeoffs.

To navigate this design space, Flex-MIN picks a point between MIN and
Demand-MIN, such that the chosen point has a good tradeoff between demand hit
rate and traffic. In particular, Flex-MIN is built on the notion of a protected line,
which is a cache line that would be evicted by Demand-MIN but not by Flex-MIN
because it would generate traffic without providing a significant improvement in hit
rate. Thus, Flex-MIN is defined as follows:

2Prefetch misses are prefetch requests that miss in the cache

5.4. PREFETCH-AWARE CACHE REPLACEMENT 53

@ Belady’s MIN O Demand-MIN
100
= N7 e 1638
§ 80 - sphinx3_883B
2 70 tonto_2834B
§ 5 g | ==caloulix 26708 . O
s 2 50 ——bwaves_1609B .0 . %
S e = cactusADM_734B
=5 40
® B
> 30
£
g 20
10
0 : : : :
0 20 40 60 80 100

Demand hit rate % (higher is better)

Figure 5.8: With prefetching, replacement policies face a tradeoff between demand hit
rate and prefetcher traffic.

FEvict the line that will be prefetched furthest in the future and is not protected.
If no such line exists, default to MIN.

Jain et al., define a simple heuristic to identify protected lines Jain and Lin
[2018]. Of course, unlike MIN and Demand-MIN, Flex-MIN is not optimal in any
theoretical sense since it’s built on a heuristic.

PC
Cache
Access /T h Insertion
Stream § Priority
—> FlexMINgen ——5——> Harmony |__""OY J Last Level

Predictor

Cache

\ , hit/miss

Computes Flex-MIN's Remembers past Flex-
decisions for the past MIN decisions

Figure 5.9: Harmony Cache Replacement Policy.

54 5. RICHER CONSIDERATIONS

Harmony Harmony is a practical replacement policy that explores the rich de-
sign space between MIN and Demand-MIN by learning from Flex-MIN. Harmony’s
overall structure (see Figure 5.9) is similar to Hawkeye’s Jain and Lin [2016] (see Sec-
tion 4.2), but the main difference is that Harmony replaces OPTgen with FlexMIN-
gen, where FlexMINgen emulates Flex-MIN’s solution. Like Hawkeye, Harmony’s
predictor is also PC-based, except Harmony has two predictors, one for demand re-
quests and one for prefetch requests.

5.5 CACHE ARCHITECTURE-AWARE CACHE
REPLACEMENT

So far, we have assumed that the priority ordering inferred by the cache replace-
ment policy is independent of the cache architecture. However, changes in cache
architecture can have implications for cache replacement. We now discuss two such
changes to the cache architecture.

5.5.1 INCLUSION AWARE CACHE REPLACEMENT

Inclusive caches require that the contents of all the smaller caches in a multi-level
cache hierarchy be a subset of the LLC. Inclusion greatly simplifies the cache coher-
ence protocol Baer and Wang [1988], but it limits the effective capacity of the cache
hierarchy to be the size of the LLC (as opposed to the sum of all cache levels in an
exclusive cache hierarchy).

Jaleel et al., show that in an inclusive cache hierarchy, the LLC replacement
policy has a significantimpact on the smaller caches Jaleel et al. [2010a]. In particular,
when a line is evicted from the LLC, it is invalidated in the small caches to enforce
inclusion, and these inclusion victims deteriorate the hit rate of the smaller caches
because they can potentially evict lines with high temporal locality. In fact, Jaleel et
al. show that the first order benefit of non-inclusion is the elimination of inclusion
victims and not the extra cache capacity.

To avoid this pathology in inclusive cache hierarchies, Jaleel et al, propose three
cache replacement policies to preserve hot lines in the smaller caches and to extend
the lifetime of such caches in the LLC. The first policy, called Temporal Locality
Hints (TLH), conveys the temporal locality of “hot” lines in the core caches by send-
ing hints to the LLC. These hints are used to update the replacement state in the LL.C
so that the LLC is less likely to choose a victim that will force an inclusion victim.
The second policy, called Early Core Invalidation (ECI) derives the temporal locality
of the line in smaller caches while the line still has high priority in the LLC. The main
idea is to choose a line early, invalidate it in the smaller caches while retaining it in
the LLC; subsequent requests to the LL.C for that line indicate the temporal locality

5.5. CACHE ARCHITECTURE-AWARE CACHE REPLACEMENT 55

of the line for smaller caches. Finally, the third policy, called Query Based Selection
(QBS), directly queries the smaller caches: When the LLC selects a replacement vic-
tim, it queries the smaller caches for approval and uses the information to make its
replacement decisions.

With these simple modifications to the LLC replacement policy, Jaleel et al.,
show that inclusive cache hierarchies can perform similar to non-inclusive hierar-
chies.

5.5.2 COMPRESSION-AWARE CACHE REPLACEMENT

Increased cache capacity can improve system performance by improving hit rates,
but it comes at the cost of area and energy. Compressed caches provide an alternate
solution, where data in the cache is compressed to achieve higher effective capacity.
For example, if every cache block can be compressed by 4x, the effective cache
capacity can be increased 4 x.

Of course, not all cache entries can be compressed, so compression gener-
ates variable-sized cache blocks, with larger (uncompressed) blocks consuming more
cache space than smaller (compressed) blocks. Therefore, compressed caches use a
different cache architecture to support variable-sized blocks of different compress-
ibility levels Sardashti and Wood [2013], Sardashti et al. [2016], and they need new
cache replacement policies to reason about compressibility in addition to temporal
locality.

In particular, compressed cache replacement policies must consider the im-
balanced benefit of evicting larger blocks vs. evicting smaller blocks. It is beneficial
to evict uncompressed blocks because they will generate more free cache capacity,
which can be used to cache multiple compressed blocks. But the benefits of evict-
ing an uncompressed block need to balanced with the desire to evict lines that will
not be soon re-referenced. We now describe two replacement policies that address
these issues.

Compression-Aware Management Policy (CAMP) CAMP Pekhimenko et al.
[2015] is a replacement policy that takes into account both compressed cache block
size and temporal locality. In particular, CAMP computes the za/ue of a line by com-
bining information about its size and expected future reuse, and it evicts the line with
the lowest value. This component of CAMP is called Minimal-Value Eviction (MVE),
and it is based on the observation that it is preferable to evict an uncompressed block
with good locality to create room for a set of smaller compressed blocks of the same
total size, as long as the set of blocks have enough locality to collectively provides a
larger number of hits. Of course, when two blocks have similar locality characteris-
tics, it is preferable to evict the larger cache block.

56 5. RICHER CONSIDERATIONS

More concretely, CAMP computes the value of each line as follows: V; = p;/s;,
where s; is the compressed block size of block i and p; is a predictor of locality,
such that a larger value of p; indicates that block i will be re-referenced sooner; p; is
estimated using the RRIP policy Jaleel et al. [2010b]. Thus, the value increases with
higher temporal locality, and it decreases with larger block size. Blocks with a lower
overall value are preferable for eviction.

The second component of CAMP, called the Size-Based Insertion Policy (SIP)
is based on the observation that the compressed size of a block can sometimes be
used as an indicator of'its reuse characteristics. Thus, s; can be used to predict p;. The
intuition behind this observation is that elements belonging to the same data structure
can have similar compressibility and similar reuse characteristics. SIP exploits this
observation by inserting blocks of certain sizes with high priority. To find block sizes
that will benefit from high-priority insertion, SIP uses dynamic set sampling Qureshi
et al. [2006].

Base Victim Compression Gaur et al., observe that that cache compression and
replacement policies can interact antagonistically Gaur et al. [2016]. In particular,
they find that decisions that favor compressed blocks over uncompressed blocks can
lead to sub-optimal replacement decisions because they force intelligent replace-
ment policies to change their replacement order. As a result, the resulting com-
pressed cache loses the performance gains from state-of-the-art replacement poli-
cies.

To avoid negative interactions with replacement policies, Gaur et al., introduce
a cache design that guarantees that all lines that would have existed in an uncom-
pressed cache would also be present in the compressed cache. In particular, their
cache design keeps the data array unmodified, but it modifies the tag array to ac-
commodate compression. In particular, the tag array is augmented to associate two
tags with each physical way. Logically, the cache is partitioned into a Baseline cache,
which is managed just like an uncompressed cache, and a Victim cache, which op-
portunistically caches victims from the baseline cache if they can be compressed.
This design guarantees a hit rate at least as high as that of an uncompressed cache,
so it enjoys the benefits of advanced replacement policies. Furthermore, it can lever-
age the benefits of compression with simple modifications to the tag array.

5.6 NEW TECHNOLOGY CONSIDERATIONS

For many decades now, caches have been built using SRAM technology, but newer
memory technologies promise change as they have been shown to address many
limitations of conventional SRAM caches Fujita et al. [2017], Wong et al. [2016]. An
in-depth analysis of these technologies is beyond the scope of this book, but we now

5.6. NEW TECHNOLOGY CONSIDERATIONS 57

briefly discuss design tradeoffs that emerging memory technologies will introduce
for cache replacement.

5.6.1 NVM CACHES

Korgaonkar et al., show that last-level caches based on Non-Volatile Memories
promise high capacity and low power but suffer from performance degradation due
to their high write latency Korgaonkar et al. [2018]. In particular, the high latency of
writes puts pressure on the NVM cache’s request queues, which puts backpressure
on the CPU and interferes with performance-critical read requests.

To mitigate these issues, Korgaonkar et al., propose two cache replacement
strategies. First, they introduce a write congestion aware bypass (WCAB) policy that
eliminates a large fraction of writes to the NVM cache, while avoiding large reduc-
tions in the cache’s hit rate. Second, they establish a virtual hybrid cache that absorbs
and eliminates redundant writes that would otherwise result in slow NVM writes.

WCARB builds on the observation that traditional bypassing policies Khan et al.
[2010] perform a limited number of write bypasses because they optimize for hit rates
instead of write intensity. Unfortunately, naively increasing the intensity of write by-
passing adversely affects the cache’s hit rate, negating the capacity benefits of NVM
caches. Thus, we have a tradeoff between cache hit rate and write intensity. Kor-
gaonkar et al., manage this tradeoff by dynamically estimating write congestion and
liveness. If write congestion is high, WCAB sets a high target live score, which means
that the liveness score of a line would have to be extremely high for it not to be by-
passed. Alternatively, if the write congestion is low, WCAB performs conservative
bypassing by reducing the target live score. The liveness score is estimated by sam-
pling a few sets and measuring, for each PC, the fraction of writes that are reused by
a subsequent read.

These simple changes to the NVM cache’s replacement scheme have a signifi-
cant impact on its performance and energy, enabling NVM LLCs to utilize the high
density of the NVM technology at a performance that is comparable to SRAM caches.

5.6.2 DRAM CACHES

By vertically integrating DRAM and CPU using a high-speed interface, 3D die stack-
ing Black [2013], Black et al. [2006] enables dramatic increase in bandwidth between
processor and memory. Since the size of stacked-DRAM is not large enough to re-
place conventional DRAM, researchers have proposed using die-stacked DRAMs as
high-bandwidth L4 caches Chou et al. [2015], Jevdjic et al. [2013, 2014], Jiang et al.
[2010], Qureshi and Loh [2012] (see Figure 5.10).

Compared to SRAM caches, DRAM caches offer high capacity—hundreds of
megabytes or a few gigabytes—and high bandwidth, but they are much slower, with

58 5. RICHER CONSIDERATIONS

EFIE@
(1@

L3

DRAM Cache

Main Memory

Figure 5.10: Die-stacked DRAM can be used as a large 1.4 cache.

latencies comparable to DRAM. Many different DRAM cache organizations have
been proposed Jevdjic et al. [2013], Qureshi and Loh [2012], but a common concern
for all DRAM cache replacement policies is to improve hit rates without exacerbating
the already high hit latency. For example, some DRAM cache designs co-locate tag
with data in the DRAM array Qureshi and Loh [2012], and for these caches, filling in
data that will not be used adds significant bandwidth overhead due to tag reads and
writes Chou et al. [2015]. For such DRAM cache designs, the bandwidth overhead is
large enough to increase hit latency to a point that it is profitable to reduce hit rate
at the cost of lower traffic Chou et al. [2015], Qureshi and Loh [2012].

Chou et al., propose a Bandwidth-Aware Bypassing scheme to mitigate the
harmful effects of adding undesirable data in DRAM caches Chou et al. [2015]. The
key idea is to use set dueling to identify the proportion of the lines that should be
bypassed. In particular, two sampling monitors (512K sets each) measure the hit rate
of (1) a baseline cache that does not bypass any lines and (2) a cache that probabilisti-
cally bypasses 90% of the lines. The baseline cache is likely to have a higher hit rate
at the cost of more bandwidth consumption, whereas the probabilistically updated
cache will reduce bandwidth consumption at the cost of lower hit rates. Probabilistic
bypassing is chosen if its hit rate is not significantly worse than the baseline.

Other DRAM caches are organized at a page granularity so that tags can be
stored in fast SRAM arrays Jevdjic etal. [2013, 2014], but these designs also incur high
bandwidth overhead because of the need to fill the entire page on a cache miss. Jiang
et al., propose to resolve the bandwidth inefficiency of page-based DRAM caches by
only caching 4ot pages (CHOP) in the DRAM cache Jiang et al. [2010]. To identify hot

5.6. NEW TECHNOLOGY CONSIDERATIONS 59

Last-Level Cache

Find hot pages in DRAM cache,
others in main memory

e T

Allocate hot pages in DRAM cache

Main Memory

Figure 5.11: CHOP uses a filter cache to identify hot pages.

pages, they use a filter cache (CHOP-FC) that tracks the access frequency of pages
that miss in the L3 and only insert a page in the DRAM cache if its access frequency
is above a certain threshold (see Figure 5.11). To avoid missing hot pages that get
prematurely evicted from the filter cache, they also propose a scheme in which the
frequency counters in the filter cache are backed up in main memory (CHOP-MFC).
For efficiency, these counters can be added to the page’s page-table entry so that
they can be retrieved on-chip on a TLB miss. Finally, since the requirements on the
DRAM cache vary by workload, they propose adaptive versions of CHOP-FC and
CHOP-MFC that turn the filter cache on or off based on memory utilization.

60

CHAPTER 6

Conclusions

In this book, we have summarized and organized research in cache replacement by
defining a new taxonomy of cache replacement policies. While we have not dis-
cussed every policy in the literature, we hope that our taxonomy outlines strategic
shifts in the design of cache replacement solutions. For example, we have shown
that while the first three or four decades of research in cache replacement focused
largely on Coarse-Grained policies, the last decade has seen a notable shift towards
Fine-Grained policies.

Cache Replacement Championship 2017 This trend towards Fine-Grained
policies is apparent from the results of the 2017 Cache Replacement Championship
(CRC), which provides a useful snapshot of the current state-of-the-art.

The CRC is conducted every few years to compare state-of-the-art policies
within a uniform evaluation framework. The most recent CRC was held in 2017 in
conjunction with ISCA, where submissions were compared on four configurations:
(1) a single-core system without a prefetcher, (2) a single-core system with L1/L2
prefetchers, (3) a four-core system without a prefetcher, and (4) a four-core system
with L1/L2 prefetchers. Evaluation was done using representative regions of SPEC
2006 benchmarks, and simulations were run for 1 billion instructions after warming
up the caches for 200 million instructions.

Figure 6.1! and Figure 6.2 summarize the performance of the top-three poli-
cies for each configuration. For the two single-core configurations, we include the
performance of MIN?.

The Hawkeye policy Jain and Lin [2016] won the CRC in 2017. However, a
more detailed analysis of the CRC results points to some interesting trends. First,
while the difference among individual submissions (including those not shown) is
small, cache replacement policies have improved significantly, as the top three solu-
tions show impressive improvements over SHiP, which was proposed in 2011. Sec-
ond, the benefit of intelligent cache replacement is more pronounced on multi-core

ILIME is a version of Hawkeye produced by a group other than the original authors.

2MIN is provably optimal in the absence of prefetching (first configuration), but not in the presence of prefetch-
ing (second configuration). Since MIN requires knowledge of the future, we run the simulation twice to esti-
mate MIN’s speedup. The second simulation uses MIN’s caching decisions from the first simulation. It is diffi-
cult to simulate MIN on multi-core configurations because applications can interleave non-deterministically
across different runs.

. Single-Core IPC speedup (with L1/L2 prefetcher)
Single-Core IPC speedup (no prefetcher)

5 -

7 6.6% 45 - 4.3%
S 6 o 4
x x
< 5% < 35
55 aa% AT 57
= x 3 2.5%
— 4 | D70
= 4 2.5 - 2.2% 22%
5} 3.1% B
> 4
2 3 2z 2
g o 4]
32 gl
8 g 17 06%
a1 & 05

0 ‘ 0 1 - i

SHiP MPPPB LIME! SHiP++ SHiP Hawkeye MPPPB SHiP++ MIN
(baseline) (baseline)

Figure 6.1: Cache Replacement Championship 2017 Single-Core Results.

Four-Core IPC speedup (no prefetcher) Four-Core IPC speedup (with L1/L2 prefetcher)
12 87 7.2%
7 9 6.5%
10 - 9.0% 9.6% - 64%)
S 8.2% g6
é 8 69% 25
= 6 - 24
g 5. 2%
o 4 - o
2 521
=
2 o
2 7]
2 0
SHiP MPPPB Hawkeye SHiP SHiP++ Hawkeye
(baseline) (baseline)

Figure 6.2: Cache Replacement Championship 2017 Multi-Core Results.

systems than single-core systems. On the 4-core configuration, the winning solution
improves performance by 9.6 % in the absence of prefetching (vs. 5% for single-core

configuration) and by 7.2% in the presence of prefetching (vs. 2.5% for single-core
configuration).

Trends and Challenges Our comprehesive look at cache replacement policies re-
veals some clear trends, which point to interesting opportunities for future research.

First, Fine-Grained policies, particularly Classification-Based policies, have
been shown to outperform traditional Coarse-Grained policies. The most recent
Cache Replacement Championship publicized the top three performing finishers
of their 15 submissions, and all three used Fine-Grained policies. Of course, Fine-
Grained policies leverage aging mechanisms from Coarse-Grained policies, so one

avenue of future work would be to explore aging schemes customized for Fine-
Grained policies.

61

62 6. CONCLUSIONS

Second, Fine-Grained policies learn from past behavior, but the key imped-
iment to their performance is their prediction accuracy and their ability to handle
inaccurate predictions. Improvements in prediction accuracy are needed to bridge
the gap between practical policies and Belady’s MIN. As we discuss in Section 4.2.3,
state-of-the-art Fine-Grained policies now view cache replacement as a supervised
learning problem, which opens up the possibility of applying machine learning to
cache replacement.

Third, as seen in Figure 6.1, there remains a considerable gap between state-
of-the-art replacement policies and MIN even for single-core configurations, which
suggests that there is still room to improve cache replacement for both single-core
and multi-core configurations.

Fourth, recent advances have blurred the line between dead block predictors
and Fine-Grained cache replacement policies, and we show that even though tradi-
tional dead block predictors were designed for a different goal, they fit well in our
cache replacement taxonomy.

Finally, there is room to improve cache replacement policies by considering
richer factors, including (1) cache replacement policies that cooperate with other
components in the system, such as the prefetcher, (2) policies that use performance
goals that go beyond improved cache hit rates, and (3) policies that take into account
the cache architecture and new memory technologies. Unfortunately, accounting for
richer factors within a cache replacement policy remains a challenging problem be-
cause of the significantly larger design spaces and because of the lack of efficient
optimal algorithms to guide the design process. Nevertheless, with the low-hanging
fruit already plucked, these avenues remain promising for future cache replacement
research.

Bibliography

2nd Cache Replacement Championship, 2017. URL http://crc2.ece.tamu.edu/.

Jaume Abella, Antonio Gonzalez, Xavier Vera, and Michael FP O’Boyle. Iatac: a smart
predictor to turn-off 12 cache lines. ACM Transactions on Architecture and Code
Optimization (TACO), 2(1):55-77, 2005.

Jorge Albericio, Pablo Ibanez, Victor Vinals, and Jos¢ M Llaberia. The reuse
cache: downsizing the shared last-level cache. In Proceedings of the 46th Annual
IEEE[ACM International Symposium on Microarchitecture, pages 310-321. ACM,
2013.

Akhil Arunkumar and Carole-Jean Wu. Remap: Reuse and memory access cost aware
eviction policy for last level cache management. In 2074 /EEE 32nd International
Conference on Computer Design (ICCD), pages 110—117. IEEE, 2014.

J.-L. Baer and W.-H. Wang. On the inclusion properties for multi-level cache hier-
archies. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, pages 73—80, 1988.

Nathan Beckmann and Daniel Sanchez. Maximizing cache performance under un-
certainty. In2017 IEEFE International Symposium on High Performance Computer
Architecture (HPCA), pages 109-120, 2017.

Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal, pages 78—101, 1966.

Bryan Black. Die stacking is happening. In /n#l. Symp. on Microarchitecture, Davis,
CA, 2013.

Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei Jiang, Gabriel H
Loh, Don McCaule, Pat Morrow, Donald W Nelson, Daniel Pantuso, et al. Die
stacking (3d) microarchitecture. In Proceedings of the 39th Annual IEEEIACM
International Symposium on Microarchitecture, pages 469—479. IEEE Computer
Society, 2006.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422—-426, 1970.

http://crc2.ece.tamu.edu/

64 6. CONCLUSIONS

Chiachen Chou, Aamer Jaleel, and Moinuddin K Qureshi. Bear: techniques for mit-
igating bandwidth bloat in gigascale dram caches. In ACM SIGARCH Computer
Architecture News, volume 43, pages 198—210. ACM, 2015.

Edward Grady Coffman and Peter | Denning. Operating systems theory, volume 973.
Prentice-Hall Englewood Cliffs, NJ, 1973.

Peter] Denning. Thrashing: Its causes and prevention. In Proceedings of the De-
cember 9-11, 1968, fall joint computer conference, part I, pages 915-922. ACM,
1968.

Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexan-
der V. Veidenbaum. Improving cache management policies using dynamic reuse
distances. In 45th Annual IEEEIACM International Symposium on Microarchi-
tecture (MICRO), pages 389—-400, 2012.

Priyank Faldu and Boris Grot. Leeway: Addressing variability in dead-block predic-
tion for last-level caches. In Proceedings of the 26th International Conference on
Parallel Architectures and Compilation Techniques, pages 180—193, 2017.

Brian Fields, Shai Rubin, and Rastislav Bodik. Focusing processor policies via
critical-path prediction. In Proceedings of the 28th Annual International Sym-
posium on Computer Architecture, ISCA 01, pages 74—85. ACM, 2001.

Shinobu Fujita, Hiroki Noguchi, Kazutaka Ikegami, Susumu Takeda, Kumiko No-
mura, and Keiko Abe. Novel memory hierarchy with e-stt-mram for near-future
applications. In VZS7 Design, Automation and 1est (VLSI-DAT), 2017 Interna-
tional Symposium on, pages 1-2. IEEE, 2017.

Hongliang Gao and Chris Wilkerson. A dueling segmented LRU replacement algo-
rithm with adaptive bypassing. In /WAC 2010-1st JILP Workshop on Computer
Architecture Competitions: Cache Replacement Championship, 2010.

Jayesh Gaur, Alaa R Alameldeen, and Sreenivas Subramoney. Base-victim compres-
sion: An opportunistic cache compression architecture. In Computer Architecture
(ISCA), 2016 ACMJIEEE 43rd Annual International Symposium on, pages 317—
328. IEEE, 2016.

Jim Handy. 7%e cache memory book. Morgan Kaufmann, 1998.

Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. Timekeeping in the mem-
ory system: predicting and optimizing memory behavior. In Computer Architec-
ture, 2002. Proceedings. 29th Annual International Symposium on, pages 209—
220. IEEE, 2002.

65

Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access map pattern matching for high per-
formance data cache prefetch. In journal of Instruction-Level Parallelism, vol-
ume 13, pages 1-24, 2011.

Yasuo Ishii, Mary Inaba, and Kei Hiraki. Unified memory optimizing architecture:
memory subsystem control with a unified predictor. In Proceedings of the 26th
ACM International Conference on Supercomputing, pages 267—-278, 2012.

Akanksha Jain and Calvin Lin. Back to the future: Leveraging belady’s algorithm for
improved cache replacement. In Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2016.

Akanksha Jain and Calvin Lin. Rethinking belady’s algorithm to accommodate
prefetching. In 2018 ACMIIEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA), pages 110-123. IEEE, 2018.

Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon Steely,
Jr., and Joel Emer. Adaptive insertion policies for managing shared caches. In 772
International Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 208-219, 2008.

Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C Steely Jr, and Joel Emer. Achiev-
ing non-inclusive cache performance with inclusive caches: Temporal locality
aware (tla) cache management policies. In Proceedings of the 2010 43rd Annual
IEEE[IACM International Symposium on Microarchitecture, pages 151—-162. IEEE
Computer Society, 2010a.

Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr, and Joel Emer. High perfor-
mance cache replacement using re-reference interval prediction (RRIP). In Pro-
ceedings of the International Symposium on Computer Architecture (ISCA), pages
60-71, 2010b.

Jaeheon Jeong and Michel Dubois. Cache replacement algorithms with nonuniform
miss costs. /EEE Transactions on Computers, 55(4):353-365, 2006.

Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram caches for
servers: hit ratio, latency, or bandwidth? have it all with footprint cache. In ACM
SIGARCH Computer Archilecture News, volume 41, pages 404—415. ACM, 2013.

Djordje Jevdjic, Gabriel H Loh, Cansu Kaynak, and Babak Falsafi. Unison cache: A
scalable and effective die-stacked dram cache. In Proceedings of the 47th Annual
IEEEIACM International Symposium on Microarchitecture, pages 25-37. IEEE
Computer Society, 2014.

66 6. CONCLUSIONS

Xiaowei Jiang, Niti Madan, Li Zhao, Mike Upton, Ravishankar Iyer, Srihari Makineni,
Donald Newell, Yan Solihin, and Rajeev Balasubramonian. Chop: Adaptive filter-
based dram caching for cmp server platforms. In APCA-16 2010 The Sixteenth
International Symposium on High-Performance Computer Architecture, pages 1—
12. IEEE, 2010.

Daniel A. Jiménez. Insertion and promotion for tree-based PseudoLRU last-level
caches. In46th Annual IEEE[ACM International Symposium on Microarchitecture
(MICRO), pages 284—296, 2013.

Daniel A. Jiménez and Elvira Teran. Multiperspective reuse prediction. In Proceed-
ings of the 50th Annual IEEEIACM International Symposium on Microarchitecture
(MICRO), pages 436—448, 2017.

Ramakrishna Karedla,] Spencer Love, and Bradley G Wherry. Caching strategies to
improve disk system performance. Computer, (3):38—46, 1994.

Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay: exploiting
generational behavior to reduce cache leakage power. In Computer Architecture,
2001. Proceedings. 28th Annual International Symposium on, pages 240-251.
IEEE, 2001.

Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. Cache replacement
based on reuse-distance prediction. In 25" /nternational Conférence on Computer
Design (ICCD), pages 245-250, 2007.

Samira Khan, Yingying Tian, and Daniel A Jiménez. Sampling dead block predic-
tion for last-level caches. In 437rd Annual IEEE[ACM International Symposium on
Microarchitecture (MICRO), pages 175-186, 2010.

Mazen Kharbutli and Rami Sheikh. Lacs: A locality-aware cost-sensitive cache re-
placement algorithm. /EEE Transactions on Computers, 63(8):1975—-1987, 2014.

Mazen Kharbutli and Yan Solihin. Counter-based cache replacement algorithms. In
Proceedings of the International Conférence on Computer Design (ICCD), pages
61-68, 2005.

Jinchun Kim, Elvira Teran, Paul V Gratz, Daniel A Jiménez, Seth H Pugsley, and Chris
Wilkerson. Kill the program counter: Reconstructing program behavior in the pro-
cessor cache hierarchy. In Proceedings of the Twenty-Second Int Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
L0OS), pages 737-749, 2017.

67

Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth Manipatruni,
Sreenivas Subramoney, Tanay Karnik, Steven Swanson, Ian Young, and Hong
Wang. Density tradeoffs of non-volatile memory as a replacement for sram based
last level cache. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, pages 315-327. IEEE Press, 2018.

An-Chow Lai and Babak Falsafi. Selective, accurate, and timely self-invalidation
using last-touch prediction. In tke 27th International Symposium on Computer
Architecture (ISCA), pages 139-148, 2000.

An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction & dead-block
correlating prefetchers. In Proceedings. 28th Annual International Symposium on
Computer Architecture (ISCA), 2001.

D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. LRFU: a
spectrum of policies that subsumes the Least Recently Used and Least Frequently
Used policies. /EEE Transactions on Computers, pages 1352—1361, 2001.

Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. On the existence of a spectrum of policies that sub-
sumes the least recently used (Iru) and least frequently used (Ifu) policies. In
ACM SIGMETRICS Performance Evaluation Review, volume 27, pages 134—143.
ACM, 1999.

Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency. In 47s7 An-
nual IEEEIACM [nternational Symposium on Microarchitecture (MICRO), pages
222-233, 2008.

Madhavan Manivannan, Vassilis Papaefstathiou, Miquel Pericas, and Per Stenstrom.
Radar: Runtime-assisted dead region management for last-level caches. In 2076
IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 644—656. IEEE, 2016.

R.L. Mattson, J. Gegsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. /BM Systems Journal, 9(2):78—117, 1970.

Anant Vithal Nori, Jayesh Gaur, Siddharth Rai, Sreenivas Subramoney, and Hong
Wang. Criticality aware tiered cache hierarchy: a fundamental relook at multi-level
cache hierarchies. In 2018 ACMIIEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 96—109. IEEE, 2018.

68 6. CONCLUSIONS

Elizabeth | O’Neil, Patrick E O'Neil, and Gerhard Weikum. The LRU-K page re-
placement algorithm for database disk buffering. In ACM SIGMOD Record, pages
297-306, 1993.

Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, and Todd C Mowry. Exploiting compressed block size as an
indicator of future reuse. In 2015 [IEEFE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 51—-63. IEEE, 2015.

Moinuddin K Qureshi and Gabe H Loh. Fundamental latency trade-off in architect-
ing dram caches: Outperforming impractical sram-tags with a simple and practical
design. In Proceedings of the 2012 45th Annual IEEEIACM International Sympo-
stum on Microarchilecture, pages 235—-246, 2012.

Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In
2006 39th Annual IEEE[ACM International Symposium on Microarchitecture (MI-
CROV6), pages 423—432. IEEE, 2006.

Moinuddin K Qureshi, Daniel N Lynch, Onur Mutlu, and Yale N Patt. A case for
MLP-aware cache replacement. In Proceedings of the International Symposium
on Computer Architecture (ISCA), pages 167—178, 2006.

Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer.
Adaptive insertion policies for high performance caching. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 381-391, 2007.

Kaushik Rajan and Ramaswamy Govindarajan. Emulating optimal replacement with
a shepherd cache. In ke 40th Annual IEEEIACM I[nternational Symposium on
Microarchitecture (MICRO), pages 445—454, 2007.

John T Robinson and Murthy V Devarakonda. Data cache management using
frequency-based replacement. In ke ACM Conference on Measurement and Mod-
eling Computer Systems (SIGMETRICS), pages 134—142, 1990.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan, 1962.

Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and efficient fine-grain
cache partitioning. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 57—68, 2011.

Somayeh Sardashti and David A Wood. Decoupled compressed cache: Exploiting
spatial locality for energy-optimized compressed caching. In Proceedings of the

69

46th Annual IEEE[ACM I[nternational Symposium on Microarchitecture, pages
62-73. ACM, 2013.

Somayeh Sardashti, André Seznec, and David A Wood. Yet another compressed
cache: A low-cost yet effective compressed cache. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 13(3):27, 2016.

Vivek Seshadri, Onur Mutlu, Michael A Kozuch, and Todd C Mowry. The evicted-
address filter: A unified mechanism to address both cache pollution and thrashing.

In the 21st Intl Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 355-366, 2012.

Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, and Todd C Mowry. Mitigating prefetcher-caused pollution
using informed caching policies for prefetched blocks. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 11(4):51, 2015.

D Shasha and T Johnson. 2q: A low overhead high performance buffer management
replacement algoritm. In Proceedings of the Twentieth International Conference
on Very Large Databases, Santiago, Chile, pages 439—450, 1994.

Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. EELRU: simple and effective
adaptive page replacement. In ACM SIGMETRICS Performance Evaluation Re-
view, pages 122—133, 1999.

Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of hardware
prefetchers. In Proceedings of the 13th International Symposium on High Per-

Jormance Computer Architecture (HPCA), pages 63—74, 2007.

Srikanth T Srinivasan and Alvin R Lebeck. Load latency tolerance in dynamically
scheduled processors. In Proceedings of the 31st annual ACM|IEEFE international
symposium on Microarchitecture, pages 148—159. IEEE Computer Society Press,
1998.

Srikanth T Srinivasan, R Dz-Ching Ju, Alvin R Lebeck, and Chris Wilkerson. Lo-
cality vs. criticality. In Computer Architecture, 2001. Proceedings. 28th Annual
International Symposium on, pages 132—143. IEEE, 2001.

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu.
The application slowdown model: Quantifying and controlling the impact of inter-
application interference at shared caches and main memory. In Proceedings of the
48th International Symposium on Microarchitecture, pages 62—75. ACM, 2015.

70 6. CONCLUSIONS

Masamichi Takagi and Kei Hiraki. Inter-reference gap distribution replacement:
an improved replacement algorithm for set-associative caches. In Proceedings of
the 18th annual international conference on Supercomputing, pages 20—30. ACM,
2004.

Elvira Teran, Zhe Wang, and Daniel A Jiménez. Perceptron learning for reuse predic-
tion. In Microarchitecture (MICRO), 2016 49th Annual I[EEEIACM International
Symposium on, pages 1-12. IEEE, 2016.

HSP Wong, C Ahn,] Cao, HY Chen, SW Fong, Z Jiang, C Neumann, S Qin,] Sohn,
Y Wu, et al. Stanford memory trends, 2016.

Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C.
Steely, Jr., and Joel Emer. SHiP: Signature-based hit predictor for high perfor-
mance caching. In 44th I[EEEIACM International Symposium on Microarchitec-
ture (MICRO), pages 430—441, 2011a.

Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C. Steely, Jr., and
Joel Emer. PACMan: prefetch-aware cache management for high performance
caching. In 44th Annual IEEEIACM International Symposium on Microarchitec-
ture (MICRO), pages 442—453, 2011b.

Yuejian Xie and Gabriel H Loh. Pipp: promotion/insertion pseudo-partitioning of
multi-core shared caches. In Proceedings of the 36 th Annual IEEEJIACM Interna-
tional Symposium on Computer Architecture, pages 174—183. ACM, 2009.

71

Author’s Biography

AKANKSHA JAIN

Akanksha Jain is a Research Associate at The University of Texas at Austin. She re-
ceived her Ph.D. in Computer Science from The University of Texas in August 2016.
In 2009, she received the B.Tech and M. Tech degrees in Computer Science and En-
gineering from the Indian Institute of Technology Madras. Her research interests are
in computer architecture, with a particular focus on the memory system and on using
machine learning techniques to improve the design of memory system optimizations.

CALVIN LIN

Calvin Lin is a University Distinguished Teacher Professor of Computer Science at
The University of Texas at Austin. Lin received the BSE in Computer Science from
Princeton University in 1985 (Magna Cum Laude) and the Ph.D. in Computer Sci-
ence from the University of Washington in December, 1992. Lin was a postdoc at
the University of Washington until 1996, when he joined the faculty at Texas. Lin’s
research takes a broad view at how compilers and computer hardware can be used
to improve system performance, system security, and programmer productivity. He
is also Director of UT’s Turing Scholars Honors Program, and when he is not work-
ing, he can be found chasing his two young sons or coaching the UT men’s ultimate
frisbee team.

	Preface
	Acknowledgments
	Introduction
	A Taxonomy of Cache Replacement Policies
	Coarse-Grained Policies
	Fine-Grained Policies
	Design Considerations

	Coarse-Grained Replacement Policies
	Recency-Based Policies
	Variants of LRU
	Beyond LRU: Insertion and Promotion Policies
	Extended Lifetime Recency-Based Policies

	Frequency-Based Policies
	Hybrid Policies
	Adaptive Replacement Cache (ARC)
	Set Dueling

	Fine-Grained Replacement Policies
	Reuse Distance Prediction Policies
	Expiration-Based Dead Block Predictors
	Reuse Distance Ordering

	Classification-Based Policies
	Sampling Based Dead Block Prediction (SDBP)
	Signature Based Hit Prediction (SHiP)
	Hawkeye
	Perceptron-Based Prediction
	Evicted Address Filter (EAF)

	Other Prediction Metrics
	Economic Value Added (EVA)

	Richer Considerations
	Cost-Aware Cache Replacement
	Memory Level Parallelism (MLP)

	Criticality-Driven Cache Optimizations
	Critical Cache
	Criticality-Aware Multi-Level Cache Hierarchy

	Multi-Core-Aware Cache Management
	Cache Partitioning
	Shared-Cache-Aware Cache Replacement

	Prefetch-Aware Cache Replacement
	Cache Pollution
	Deprioritizing Prefetchable Lines

	Cache Architecture-Aware Cache Replacement
	Inclusion Aware Cache Replacement
	Compression-Aware Cache Replacement

	New Technology Considerations
	NVM Caches
	DRAM Caches

	Conclusions
	Author's Biography

